Single-Stage Equilibrium Processes

- Degree of Freedom Analysis
- Binary Vapor-Liquid Equilibrium
- Azeotropes in binary systems
- Multicomponent Flash Calculations
- Ternary Liquid-Liquid Systems
Degrees of Freedom: Gibb’s Phase Rule

Example: $C=3$ components in $\mathcal{P}=2$ phases at equilibrium.

\[
\begin{align*}
\text{Variables} & \quad \# \\
\ y & \quad C \\
\ x & \quad C \\
\ T & \quad 1 \\
\ P & \quad 1 \\
2C+2 & = 8
\end{align*}
\]

\[
\begin{align*}
\text{Equations} & \quad \# \\
\ \Sigma & \quad 1 \\
\ \Sigma & \quad 1 \\
\ K & \quad C \\
C+2 & = 5
\end{align*}
\]

\[\mathcal{F} = \mathcal{V} - \varepsilon = 3 \text{ degrees of freedom!}\]

\[\therefore \text{ we must specify 3 variables}\]

Options:
- Set T, P and one mole fraction.
- Set 3 mole fractions and determine T, P.
- Set T and 2 mole fractions
- ...

In general:

\[
\begin{align*}
\text{Variables} & \quad \# \\
x & \quad CP \\
T & \quad 1 \\
P & \quad 1 \\
\text{CP+2}
\end{align*}
\]

\[
\begin{align*}
\text{Equations} & \quad \# \\
\ \Sigma & \quad \mathcal{P} \\
K & \quad C(\mathcal{P}-1) \\
\text{CP+2} & \quad C(\mathcal{P}-1)+\mathcal{P}
\end{align*}
\]

Gibbs’ Phase Rule:

\[
\mathcal{F} = C - \mathcal{P} + 2
\]

Note: we may not be able to find a solution if we set an impossible choice of intensive variables.
Examples???
Gibbs Phase Rule & Extensive Variables

Example: single-stage equilibrium with C components in $P=2$ phases

In general, we get $C+P+4$ extra variables and $C+2$ extra equations when we include extensive quantities.

$$\mathcal{F} = \mathcal{V} - \mathcal{E} = C + 4$$

Could set $C-1$ of the z_i, T_F, P_F, T, P and then determine the remaining quantities from the equations.
Binary Vapor-Liquid Equilibrium

Diagram:
- F
- z_A
- T_F
- P_F
- Q
- T, P
- V
- y_A
- L
- x_A
Tabulated Binary VLE Data

\[\mathcal{F} = C - P + 2 \Rightarrow \mathcal{F} = 2 - 2 + 2 = 2 \]

Often data is obtained by fixing \(T \) or \(P \) and \(x_A \) or \(y_A \).

- \(x_A(P, y_A) \) at a given \(T \)
- \(x_A(T, y_A) \) at a given \(P \)

Water (A) - Glycerol (B) at 1 atm

<table>
<thead>
<tr>
<th>(T) (C)</th>
<th>(y)</th>
<th>(x)</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>104.6</td>
<td>0.9996</td>
<td>0.8846</td>
<td>333</td>
</tr>
<tr>
<td>109.8</td>
<td>0.9991</td>
<td>0.7731</td>
<td>332</td>
</tr>
<tr>
<td>128.8</td>
<td>0.998</td>
<td>0.4742</td>
<td>544</td>
</tr>
<tr>
<td>148.2</td>
<td>0.9964</td>
<td>0.3077</td>
<td>627</td>
</tr>
<tr>
<td>175.2</td>
<td>0.9898</td>
<td>0.1756</td>
<td>456</td>
</tr>
<tr>
<td>207</td>
<td>0.9804</td>
<td>0.0945</td>
<td>481</td>
</tr>
<tr>
<td>244.5</td>
<td>0.8308</td>
<td>0.0491</td>
<td>275</td>
</tr>
<tr>
<td>282.5</td>
<td>0.8308</td>
<td>0.025</td>
<td>191</td>
</tr>
<tr>
<td>290</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

Para-xylene (A) - Meta-xylene (B) at 1 atm

<table>
<thead>
<tr>
<th>(T) (C)</th>
<th>(y)</th>
<th>(x)</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>133.335</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>138.491</td>
<td>0.8033</td>
<td>0.8</td>
<td>1.0041</td>
</tr>
<tr>
<td>138.644</td>
<td>0.6049</td>
<td>0.6</td>
<td>1.0082</td>
</tr>
<tr>
<td>138.795</td>
<td>0.4049</td>
<td>0.4</td>
<td>1.0123</td>
</tr>
<tr>
<td>138.943</td>
<td>0.2032</td>
<td>0.2</td>
<td>1.016</td>
</tr>
<tr>
<td>139.088</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

what do these points represent?
Binary VLE: Methanol/Water

SHRT Table 4.1b

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>y</th>
<th>x</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>64.5</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>66</td>
<td>0.958</td>
<td>0.9</td>
<td>2.53</td>
</tr>
<tr>
<td>69.3</td>
<td>0.87</td>
<td>0.7</td>
<td>2.87</td>
</tr>
<tr>
<td>73.1</td>
<td>0.779</td>
<td>0.5</td>
<td>3.52</td>
</tr>
<tr>
<td>78</td>
<td>0.665</td>
<td>0.3</td>
<td>4.63</td>
</tr>
<tr>
<td>84.4</td>
<td>0.517</td>
<td>0.15</td>
<td>6.07</td>
</tr>
<tr>
<td>89.3</td>
<td>0.365</td>
<td>0.08</td>
<td>6.61</td>
</tr>
<tr>
<td>93.5</td>
<td>0.23</td>
<td>0.04</td>
<td>7.17</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

This “width” is directly related to the relative volatility, α.

SHR Figure 4.2a

Saturated vapor

Saturated liquid

SHR Figure 4.2b

This distance is related to the relative volatility, α.

SHR Figure 4.5

$\alpha_{ij} = \frac{K_i}{K_j}$

Mole fraction of component in vapor, y

Mole fraction of methanol in vapor

Mole fraction of methanol in liquid

Mole fraction of component 1 in liquid, x
Inverse lever-arm rule:

\[
\frac{V}{L} = \frac{DE}{EF}
\]

Given \(x_{\text{hexane}} = 0.3\),

- What is V/L at B-C?
- What is V/L at D-F?
- What is V/L at G?

- What state is G and B?
- What state is H and A?
- What state is E?
Operating Line (q-line)

 species mole balance: \(Fz_A = Vy_A + Lx_A \)

 overall mole balance: \(F = V + L \)

 Eliminate \(L \) and solve for \(y_A \)...

\[
y_A = \left[\frac{V/F - 1}{V/F} \right] x_A + \left[\frac{1}{V/F} \right] z_A \quad \text{“q-line”}
\]

- goes through \(x_A = y_A = z_A \) (45° line)
- \(0 \leq V/F \leq 1 \)
- Slope is bounded by \(-\infty\) (\(V=0 \)) and \(0 \) (\(V=F \)).
- \(V=F \) gives us point “A” (always on 45° line).

Given a molar vaporization % \((V/F)\), we can graphically determine the product compositions.

Example: for \(z_{\text{hexane}}=0.6 \) and 60% vaporization, find the \(y_i \).

1. Locate \(z_A \) on the 45° line (point “A”)
2. From \(V/F \), calculate the slope of the \(q \)-line.
3. Follow the \(q \)-line to determine the equilibrium composition (point “B”)

\[y_A = \left[\frac{V/F - 1}{V/F} \right] x_A + \left[\frac{1}{V/F} \right] z_A \]
Azeotropes in Binary Systems
What is an Azeotrope?

At an azeotrope, $K_A = K_B = 1$, $\alpha = 1$.

• No separation possible at this point!
• If you start on one side of the azeotrope, you can only recover at best a pure stream and the azeotrope - not two pure streams!

Typically occur in systems with close boiling point constituents of different chemical type (e.g. ethanol/water).

• zeotropic systems have a monotonic relationship between x_A and T.
Minimum-boiling Azeotropes

Figure 4.6a:
- What can we say about γ_A and γ_B?
- Positive deviation from Raoult’s law: $K_i = P_i^s / P$, ($K_i = \gamma_i P_i^s / P$).

Figure 4.6b
- What can we say about relative volatility across the azeotrope point?
- Note: we can change the pressure to shift the azeotrope a little bit.
- Figure 4.6a (70°C, 123 kPa) shows composition of $x=0.7$.
- Figure 4.6b & 4.6c shows $x=0.72$ (at 66°C & 101 kPa).
- ethanol-water azeotrope disappears at $P < 9.3$ kPa.
Maximum-boiling Azeotrope

Figure 4.7a:
• What can we say about γ_A and γ_B?
• Negative deviation from Raoult’s law: $K_i = P_i^s / P$, ($K_i = \gamma_i P_i^s / P$).

Again, we see a shift in the azeotrope as we change the operating pressure.
• compare 4.7a with 4.7b & 4.7c.
Predicting Azeotrope Formation

Modified Raoult’s law: \(K_i = \gamma_i \frac{P_i}{P} \)

For an azeotrope, \(K_i = 1 \)

\[\frac{P}{P^s_i} = \gamma_i = \frac{P}{P_i^s} \]

Modified Raoult’s law at an azeotrope

van-Laar: \[
\begin{align*}
\ln \gamma_1 &= \frac{A_{12}}{\left[1 + (x_1 A_{12})/(x_2 A_{21})\right]^2} \\
\ln \gamma_2 &= \frac{A_{21}}{\left[1 + (x_2 A_{21})/(x_1 A_{12})\right]^2}
\end{align*}
\]

Solve these for \(x_1 \) and \(x_2 \).
(Note: \(x_2 = 1 - x_1 \).)

Example: does ethanol (1) and n-hexane (2) form an azeotrope?

\(A_{12} = 2.409, A_{21} = 1.970 \)

Solution:

1. Choose \(P \).
2. Find \(T_{\text{bubble}} \) or \(T_{\text{dew}} \) and corresponding \(x, y \).
3. See if \(K_i = 1 \).

Up next: flash calculations to get \(T_{\text{bubble}} \) or \(T_{\text{dew}} \).
Multicomponent Flash Calculations
Flash Concepts

Two “modes”
- partial vaporization (typically add heat)
- partial condensation (typically remove heat)

“Isothermal flash”
- add/remove heat such that $T = T_F$
- must determine the “duty” of the heat exchanger to maintain T

“Adiabatic flash”
- $Q = 0$, $T \neq T_F$
- Temperature drops (vaporization) or rises (condensation).
- T is unknown, so this is more difficult than isothermal flash.
The Rachford-Rice Equation

Variables:
- x: species mole balances
- y: phase equilibrium
- z: energy balance
- F: total mole balance

Equations:

1. $F z_i = L x_i + V y_i$
2. $y_i = K_i x_i$
3. $\sum_{i=1}^{C} y_i = 1$
4. $\sum_{i=1}^{C} x_i = 1$
5. $h_F F + Q = h_V V + h_L L$
6. $F = V + L$

Auxiliary equations:
- $K_i(T, P, y_j, x_j)$
- $h_F(T_F, P_F, z_j)$
- $h_V(T, P, y_j)$
- $h_L(T, P, x_j)$

3C+8 degrees of freedom

- We typically know z_i, T_F, and P_F.
- 2 “free” variables.

Combine first two sets of equations

- Overall mole balance to eliminate L

\[
x_i = \frac{F z_i}{L + V K_i} = \frac{F z_i}{F - V + V K_i} = \frac{z_i}{1 + (K_i - 1) \frac{V}{F}}
\]

From second equation

\[
y_i = \frac{K_i z_i}{1 + (K_i - 1) \frac{V}{F}}
\]

Still 2C equations - just different form.

Substitute into $\sum x_i$ and $\sum y_i$ and then subtract to get:

\[
\sum_{i=1}^{C} \left(\frac{K_i z_i}{1 + (K_i - 1) \frac{V}{F}} - \frac{z_i}{1 + (K_i - 1) \frac{V}{F}} \right) = 0 \quad \Psi \equiv \frac{V}{F}
\]

\[
\sum_{i=1}^{C} \frac{z_i (K_i - 1)}{1 + (K_i - 1) \Psi} = 0 \quad \text{Rachford-Rice equation}
\]
Now what?

- For **ideal mixtures**, \(K_i(T, p) \). If we know \(T, p \) we can solve the Rachford-Rice equation for \(\Psi \). After that, we can easily get \(x_i, y_i \).

- For **nonideal mixtures**, \(K_i \) also depends on composition!
 - Either go back and solve a bigger system of equations or use successive substitution.
 - Successive substitution is not highly robust, but is usually good enough for these problems.

Typically, convergence is achieved when

\[
\frac{|\Psi^{(k+1)} - \Psi^{(k)}|}{\Psi^{(k)}} < 10^{-4}
\]

If \(T = T_F \) and \(P = P_F \) then we only have one equation to solve for \(\Psi \).

Ideal Mixtures:

1. Determine \(K_i(T, p) \) (using Raoults’s law, graphical techniques, etc.)
2. Solve for \(\Psi \).
3. Calculate \(y_i \) & \(x_i \)

Non-Ideal Mixtures:

1. Guess a value for \(K_i \) (e.g. from charts or Raoults’s law)
2. Solve for \(\Psi \).
3. Calculate \(y_i \) & \(x_i \)
4. Calculate \(K_i \) using your favorite model.
5. Solve for \(\Psi \).
6. If \(\Psi \) changed, return to step 3.
7. Update \(y_i \) & \(x_i \) using \(\Psi \) calculated in step 6.
Bubble Point & Dew Point

Rachford-Rice equation

\[
\sum_{i=1}^{C} \frac{z_i (K_i - 1)}{1 + (K_i - 1)\Psi} = 0
\]

- At the bubble point, \(V=0, L=F \) \(\Rightarrow \Psi=0 \).

- At the dew point, \(V=F, L=0 \) \(\Rightarrow \Psi=1 \).

Recall \(K_i = K_i(x_i, y_i, T, P) \)

Use Newtons’ method (or another nonlinear equation solver) to solve for bubble/dew point temperature or pressure.

At equilibrium, the vapor is at its dew point and the liquid is at its bubble point.
Example: bubble point calculation

Bubble point: $V=0$, $L=F$, $\Psi=0$.

Solve $\sum_{i=1}^{C} z_i K_i = 1$ to obtain T.

Need a model for $K_i(T)$.

<table>
<thead>
<tr>
<th>Component</th>
<th>Feed kmol/h</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>i-Butane</td>
<td>8.6</td>
<td>0.0319</td>
</tr>
<tr>
<td>n-Butane</td>
<td>215.8</td>
<td>0.7992</td>
</tr>
<tr>
<td>i-Pentane</td>
<td>28.1</td>
<td>0.1041</td>
</tr>
<tr>
<td>n-Pentane</td>
<td>17.5</td>
<td>0.0648</td>
</tr>
<tr>
<td></td>
<td>270</td>
<td></td>
</tr>
</tbody>
</table>

Empirical Correlation (dePriester Chart):

$$\ln K = \frac{a_1}{T^2} + \frac{a_2}{T} + a_3 + b_1 \ln p + \frac{b_2}{p^2} + \frac{b_3}{p}$$

NOTE: T in °R and p in psia!

<table>
<thead>
<tr>
<th>Compound</th>
<th>a</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isobutane</td>
<td>-1,166,846</td>
<td>0</td>
<td>7.72668</td>
<td>-0.92213</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>n-Butane</td>
<td>-1,280,557</td>
<td>0</td>
<td>7.94986</td>
<td>-0.96455</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Isopentane</td>
<td>-1,481,583</td>
<td>0</td>
<td>7.58071</td>
<td>-0.93159</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>n-Pentane</td>
<td>-1,524,891</td>
<td>0</td>
<td>7.33129</td>
<td>-0.89143</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

M. L. McWilliams, Chemical Engineering, 80(25), 1973 p. 138.
Using Raoult’s law, obtain a T-x-y diagram of the Propane-Benzene system.

Raoult’s law: \[K_i = \frac{P_i^s}{P} \]

Modified Raoult’s law: \[K_i = \gamma_i \frac{P_i^s}{P} \]

Antoine Equation parameters

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propane</td>
<td>6.80398</td>
<td>803.81</td>
<td>246.99</td>
</tr>
<tr>
<td>Benzene</td>
<td>6.90565</td>
<td>1211.033</td>
<td>220.79</td>
</tr>
</tbody>
</table>
Isothermal Flash

Given: $T=T_F$, $P=P_F$,

Find: x_i, y_i, V, L, Q.

Once we know Ψ,

$$x_i = \frac{z_i}{1 + (K_i - 1)\Psi}$$

$$y_i = K_i x_i = \frac{K_i z_i}{1 + (K_i - 1)\Psi}$$

$$V = \Psi F$$

$$L = F - V = F(1 - \Psi)$$

$$Q = h_V V + h_L L - h_F F$$

$$h_i = h_i(T)$$

$$h = \sum_{i=1}^{C} h_i x_i$$ (molar enthalpy)

1. Choose a model for K_i.
2. Given z_i, solve Rachford-Rice to obtain Ψ.
3. Calculate x_i, y_i, $V = \Psi F$, $L = F(1 - \Psi)$.
4. Calculate h_V, h_L, h_F at T and x_i, y_i
5. Calculate Q (heat exchanger duty).
Adiabatic Flash

Given: $Q=0, P=P_F$

Find: $x_i, y_i, T, V, L.$

Energy balance:
$$Q = h_V V + h_L L - h_F F$$
$$0 = F (h_V \Psi + h_L (1 - \Psi) - h_F)$$

Rachford-Rice equation:
$$\sum_{i=1}^{C} \frac{z_i (K_i - 1)}{1 + (K_i - 1) \Psi} = 0$$

2 equations, 2 unknowns (Ψ, T)

Energy Balance:
$$F [h_V \Psi + h_L (1 - \Psi) - h_F] = 0$$

Note: at each iteration, we must update values for h_V and h_L given the current value for T.
Summary - Flash Calculations

<table>
<thead>
<tr>
<th>Description</th>
<th>Knowns</th>
<th>Unknowns</th>
<th>Problem Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bubble point pressure</td>
<td>T, z_i</td>
<td>P</td>
<td>Solve $r(P) = 1 - \sum_{i=1}^{C} z_i K_i$ for P</td>
</tr>
<tr>
<td>Bubble point temperature</td>
<td>P, z_i</td>
<td>T</td>
<td>Solve $r(T) = 1 - \sum_{i=1}^{C} z_i K_i$ for T</td>
</tr>
<tr>
<td>Dew point pressure</td>
<td>T, z_i</td>
<td>P</td>
<td>Solve $r(P) = 1 - \sum_{i=1}^{C} z_i K_i / K_i$ for P</td>
</tr>
<tr>
<td>Dew point temperature</td>
<td>P, z_i</td>
<td>T</td>
<td>Solve $r(T) = 1 - \sum_{i=1}^{C} z_i K_i / K_i$ for T</td>
</tr>
<tr>
<td>Isothermal flash</td>
<td>T, P, z_i</td>
<td>Ψ, x_i, y_i</td>
<td>Solve the Rachford-Rice equation $r(\Psi) = \sum_{i=1}^{C} \frac{z_i (K_i - 1)}{1 + (K_i - 1) \Psi}$ together with $x_i = \frac{z_i}{1 + (K_i - 1) \Psi}$ and $y_i = K_i x_i$.</td>
</tr>
<tr>
<td>Adiabatic flash</td>
<td>Q, P, z_i</td>
<td>Ψ, T, x_i, y_i</td>
<td>Solve the coupled system of equations $r_1(\Psi, T) = \sum_{i=1}^{C} \frac{z_i (K_i - 1)}{1 + (K_i - 1) \Psi}$, $r_2(\Psi, T) = F [h_V \Psi + h_L (1 - \Psi) - h_F]$ together with $x_i = \frac{z_i}{1 + (K_i - 1) \Psi}$ and $y_i = K_i x_i$.</td>
</tr>
</tbody>
</table>
Ternary Liquid-Liquid Systems

Graphical Methods
We have a carrier (A) which holds solute (B). We want to extract the solute into a solvent (C).

“**A**” is insoluble in solvent “**C**”

“**simple**” mass balance.

“**A**” is partly soluble in solvent “**C**”

need to know phase equilibrium.
Case 1: Carrier (A) is insoluble in solvent (C)

Carrier (A) mole balance:
\[x_A^{(F)} F = x_A^{(R)} R \]

Solute (B) mole balance:
\[x_B^{(F)} F = x_B^{(E)} E + x_B^{(R)} R \]

Solvent (C) mole balance:
\[S = x_C^{(E)} E \]

Use A & C balances to eliminate R & E in B balance:
\[x_B^{(F)} F = x_B^{(E)} \frac{S}{x_C} + x_B^{(R)} \frac{F_A}{x_A} \]
\[X_B^{(F)} F_A = X_B^{(E)} S + X_B^{(R)} F_A \]

Molar ratios of B to “other” component:
\[X_B^{(E)} = \frac{x_B^{(E)} E}{x_C} = \frac{x_B^{(E)}}{x_C} \text{ in extract, only B & C} \]
\[X_B^{(R)} = \frac{x_B^{(R)} R}{x_A} = \frac{x_B^{(R)}}{x_A} \text{ in raffinate, only B & A} \]

Distribution or partition coefficient
\[K'_{DB} = \frac{X_B^{(E)}}{X_B^{(R)}} = \frac{x_B^{(E)}/x_C}{x_B^{(R)}/x_A} = K_{DB} \frac{1 - x_B^{(R)}}{1 - x_B^{(E)}} \]

This is the familiar “K-value” (distribution coefficient) for liquid-liquid.

\[K_{DB} = \frac{x_B^{(E)}}{x_B^{(R)}} \]

Extraction factor (large is good)
\[\frac{X_B^{(R)}}{X_B^{(F)}} = \left(1 + \frac{K'_{DB} S}{F_A}\right)^{-1} \]
Case 2: Carrier (A) is soluble in solvent (C)

1. Locate feed (M)
2. Follow tie-lines to miscibility boundary to determine product composition (E & R)
3. Inverse lever-arm rule to determine relative amount of E & R.

Identify/describe:
- How many degrees of freedom?
- Miscibility boundary
- Two-phase region
- Single-phase region
- Tie line
- Plait point
- How is this diagram made?

Note: these diagrams are for a specific T, P.
Example

Determine the extract and raffinate compositions when a 45 wt% glycol, 55 wt% water solution is contacted with twice its weight of pure furfural solvent at 25 °C and 101 kPa.

Assume $F = 100$ g basis of feed

- $S = 200$ g.
- Point “F” indicates F stream
- Point “S” indicates S stream
- Inverse lever arm rule to get point M: $(SM)/(MF) = 1/2$ or $(SM)/(SF) = 1/3$
- Follow tie line to get E & R.
 - Extract: 4% A, 9% B, 88% C
 - Raffinate: 56% A, 34% B, 10% C
- Inverse lever arm rule on tie line to get ratio of E/M and R/M:
 - $E = M (MR)/(ER) = 300 \times (5.5 \text{ cm} / 7.6 \text{ cm}) = 220$ g (measured from SHR figure 4.14)
 - $R = M (EM)/(ER) = M-E = 300 - 220 = 80$ g.
Variations on the Theme

“Right-triangle” diagram
- 2 of the 3 components
- same information as equilateral triangle diagram
- often simpler to deal with.

“Equilibrium solute” diagram
- 2 of the 3 components
- plots tie-line endpoint information.