The Maxwell-Stefan Equations

ChEn 6603

Outline

- Diffusion in "ideal," binary systems
 - Particle dynamics
 - Maxwell-Stefan equations
 - Fick's Law
- Diffusion in "ideal" multicomponent systems
 - Example: Stefan tube
 - Matrix form of the Maxwell-Stefan equations
 - Fick's Law for multicomponent systems
 - Reference velocities again

Particle Dynamics

Conservation of momentum:

$$m_1(\mathbf{u}_1 - \mathbf{u}_{f1}) + m_2(\mathbf{u}_2 - \mathbf{u}_{f2}) = 0$$

Conservation of kinetic energy (elastic collision):

$$m_1(\mathbf{u}_1^2 - \mathbf{u}_{f1}^2) + m_2(\mathbf{u}_2^2 - \mathbf{u}_{f2}^2) = 0$$

For molecules, inelastic collisions are known by another name ... what is it?

Solve for final particle velocities:

$$\mathbf{u}_{f1} = \frac{\mathbf{u}_1(m_1 - m_2) + 2m_2\mathbf{u}_2}{m_1 + m_2},$$

$$\mathbf{u}_{f2} = \frac{\mathbf{u}_2(m_2 - m_1) + 2m_1\mathbf{u}_1}{m_1 + m_2}$$

Momentum exchanged in a collision:

$$m_{1}(\mathbf{u}_{1} - \mathbf{u}_{f1}) = m_{1}\mathbf{u}_{1} - \frac{m_{1}}{m_{1} + m_{2}} (\mathbf{u}_{1}(m_{1} - m_{2}) + 2m_{2}\mathbf{u}_{2}),$$

$$= \frac{2m_{1}m_{2}(\mathbf{u}_{1} - \mathbf{u}_{2})}{m_{1} + m_{2}}.$$

Sum of forces acting on particles of type **∝** "1" per unit volume

Rate of change of momentum of particles of type "1" per unit volume Momentum
exchanged per
collision between
"1" and "2"

Rate of 1-2

Collisions per unit volume

$$\mathbf{u}_1 - \mathbf{u}_2$$

$$x_1x_2$$

Sum of forces acting on particles of type ∝ "1" per unit volume

Momentum exchanged per collision between "1" and "2"

Rate of 1-2

Collisions per unit volume

Assume:

- System pressure is constant
- Collisions are purely elastic (kinetic energy is conserved in collisions)
- No shear stress (negligible velocity gradients)

So our force (momentum) balance becomes:

$$-p\nabla x_1 \propto x_1 x_2 (\mathbf{u}_1 - \mathbf{u}_2),$$

= $f_{12} x_1 x_2 (\mathbf{u}_1 - \mathbf{u}_2)$

 f_{12} : drag coefficient for drag that particle "1" feels as a result of interactions with particles of type "2"

Define a "binary diffusion coefficient" as $\, D_{12} = \frac{p}{f_{12}} \,$

What is the binary diffusivity a function of?

$$\nabla x_1 = -\frac{x_1 x_2 (\mathbf{u}_1 - \mathbf{u}_2)}{D_{12}} \quad \text{Maxwell-Stefan Equations for a binary, ideal mixture.}$$
 diffusion driving force for species 1 (resisting diffusion)

What about ∇x_2 ?

Fick's Law - Binary Ideal System

$$\nabla x_1 = -\frac{x_1 x_2 (\mathbf{u}_1 - \mathbf{u}_2)}{D_{12}} \qquad \text{Maxwell-Stefan equations for a binary,} \\ \text{ideal system at constant pressure.}$$

$$egin{array}{lll}
abla x_1&=&-rac{x_2\mathbf{N}_1-x_1\mathbf{N}_2}{c_tD_{12}} & & & & \\ &=&-rac{x_2\mathbf{J}_1-x_1\mathbf{J}_2}{c_tD_{12}} & & & & \\
abla x_1&=&-rac{\mathbf{J}_1}{c_tD_{12}} & & & & \end{array}$$

$$\mathbf{J}_1 = -c_t D_{12} \nabla x_1$$

Fick's law for a binary, ideal system at constant pressure

Re-Cap

- \mathcal{P}_{12} can be interpreted as an inverse drag coefficient.
- $\not = D_{12} = D_{21}$ (symmetric due to momentum conservation)
- $\not = D_{12}$ depends on the characteristics of species 1 and 2 (molecule shapes, etc.), but not on their relative compositions.
- $\not = \mathcal{D}_{12}$ may depend on temperature and pressure.
- We call D_{12} the "Maxwell-Stefan" diffusivity or "Binary" diffusivity.
- From There are no "1-1" interactions here D_{11} is not defined.

Multicomponent Systems

Binary system:
$$\nabla x_1 = -\frac{x_1 x_2 (\mathbf{u}_1 - \mathbf{u}_2)}{D_{12}}$$

Ternary system: must consider 1-2, 1-3, and 2-3 interactions.

$$\nabla x_1 = -\frac{x_1 x_2 (\mathbf{u}_1 - \mathbf{u}_2)}{D_{12}} - \frac{x_1 x_3 (\mathbf{u}_1 - \mathbf{u}_3)}{D_{13}}$$
$$\nabla x_2 = -\frac{x_1 x_2 (\mathbf{u}_2 - \mathbf{u}_1)}{D_{12}} - \frac{x_2 x_3 (\mathbf{u}_2 - \mathbf{u}_3)}{D_{23}}$$

Multicomponent system: must consider *i-j* interactions.

$$\nabla x_i = -\sum_{\substack{j=1\\j\neq i}}^n \frac{x_i x_j (\mathbf{u}_i - \mathbf{u}_j)}{D_{ij}} \qquad \mathbf{d}_i = -\sum_{\substack{j=1\\j\neq i}}^n \frac{x_i x_j (\mathbf{u}_i - \mathbf{u}_j)}{D_{ij}} \qquad \text{What about } i=j?$$

$$\mathbf{Recall:} \qquad \mathbf{N}_i = x_i c \mathbf{u}_i \qquad \mathbf{J}_i = \mathbf{N}_i - x_i c \mathbf{u}$$

$$egin{array}{lll} \mathbf{d}_i &=& \displaystyle -\sum_{j
eq i}^n rac{x_j \mathbf{N}_i - x_i \mathbf{N}_j}{c D_{ij}}, \ &=& \displaystyle -\sum_{j
eq i}^n rac{x_j \mathbf{J}_i - x_i \mathbf{J}_j}{c D_{ij}}. \end{array}$$

- Constant Pressure
- Ideal mixture (elastic collisions)
 - ▶ Conservation of translational energy.
 - ▶ Where else could the energy go?

Example: Stefan Tube

Given:
$$D_{ij}$$
, $x_i(z=0)$, $x_i(z=\ell)$, $\ell = 0.238$ m, $T=328.5$ K

Find $x_i(z)$

Acetone (1), Methanol (2), Air (3)

$$x_1(z=0)=0.319$$
, $x_2(z=0)=0.528$

$$D_{12} = 8.48 \text{ mm}^2/\text{s}$$

 $D_{13} = 13.72 \text{ mm}^2/\text{s}$
 $D_{23} = 19.91 \text{ mm}^2/\text{s}$

Species balance equations (no reaction):

$$\frac{\partial \rho \omega_i}{\partial t} = \frac{\partial \rho_i}{\partial t} = -\nabla \cdot \mathbf{n}_i,$$
$$\frac{\partial cx_i}{\partial t} = \frac{\partial c_i}{\partial t} = -\nabla \cdot \mathbf{N}_i$$

At steady state (ID),

$$\mathbf{n}_i = \alpha_i$$
 Convection-diffusion balance...

From the Maxwell-Stefan equations:

$$\frac{\mathrm{d}x_i}{\mathrm{d}z} = -\sum_{j\neq i}^n \frac{x_j N_i - x_i N_j}{c_t D_{ij}}$$

A semi-analytic solution

$$\begin{array}{ll} \text{Maxwell-Stefan} & \frac{\mathrm{d}x_i}{\mathrm{d}z} = -\sum_{i \neq i}^n \frac{x_j N_i - x_i N_j}{c_t D_{ij}} & \text{Normalized} \\ \text{Equations} & \eta \equiv \frac{z}{\ell}, & \frac{\mathrm{d}}{\mathrm{d}z} = \frac{\mathrm{d}}{\mathrm{d}\eta} \frac{\mathrm{d}\eta}{\mathrm{d}z} = \frac{1}{\ell} \frac{\mathrm{d}}{\mathrm{d}\eta} \end{aligned}$$

$$\eta \equiv rac{z}{\ell},$$

$$\frac{\mathrm{d}}{\mathrm{d}z} = \frac{\mathrm{d}}{\mathrm{d}\eta} \frac{\mathrm{d}\eta}{\mathrm{d}z} = \frac{1}{\ell} \frac{\mathrm{d}}{\mathrm{d}\eta}$$

$$\frac{1}{\ell} \frac{\mathrm{d}x_i}{\mathrm{d}\eta} = \sum_{\substack{j=1\\j\neq i}}^n \frac{x_i N_j - x_j N_i}{c_t D_{ij}}, \quad \text{We need to eliminate } x_n \text{ from the equation} \\ \text{so that we have unknowns } x_1 \dots x_{n-1}.$$

$$= x_i \sum_{j \neq i}^n \frac{N_j}{c_t D_{ij}} - \frac{x_n N_i}{c_t D_{in}} - \sum_{j \neq i}^{n-1} \frac{x_j N_i}{c_t D_{ij}}$$
 Eliminate x_n by substituting: $x_n = 1 - \sum_{j=1}^{n-1} x_j = 1 - x_i - \sum_{j \neq i}^{n-1} x_j$

$$x_n = 1 - \sum_{j=1}^{n-1} x_j = 1 - x_i - \sum_{j \neq i}^{n-1} x_j$$

$$\frac{1}{\ell} \frac{\mathrm{d}x_i}{\mathrm{d}\eta} = x_i \sum_{j \neq i}^n \frac{N_j}{c_t D_{ij}} - \frac{N_i}{c_t D_{in}} \left(1 - x_i - \sum_{j \neq 1}^{n-1} x_j \right) - \sum_{j \neq i}^{n-1} \frac{x_j N_i}{c_t D_{ij}}, \quad \text{rearrange a bit, collecting terms on } x_i, x_j.$$

$$= x_i \left(\frac{N_i}{c_t D_{in}} + \sum_{j \neq i}^n \frac{N_j}{c_t D_{ij}} \right) - \frac{N_i}{c_t D_{in}} + \sum_{j \neq i}^{n-1} \left(\frac{N_i}{c_t D_{in}} - \frac{N_i}{c_t D_{ij}} \right) x_j, \quad \text{move } \ell \text{ over.}$$

$$x_i \left(\frac{N_i}{c_t D_{in}} + \sum_{j \neq i}^n \frac{N_j}{c_t D_{ij}} \right) - \frac{N_i}{c_t D_{in}} + \sum_{j \neq i}^{n-1} \left(\frac{N_i}{c_t D_{in}} - \frac{N_i}{c_t D_{ij}} \right) x_j, \quad \text{move } \ell \text{ over}$$

$$\frac{\mathrm{d}x_i}{\mathrm{d}\eta} = = \underbrace{\left(\frac{N_i}{c_t D_{in}/\ell} + \sum_{j \neq i}^n \frac{N_j}{c_t D_{ij}/\ell}\right)}_{\Phi_{ii}} x_i + \underbrace{\sum_{j \neq i}^{n-1} \left(\frac{N_i}{c_t D_{in}/\ell} - \frac{N_i}{c_t D_{ij}/\ell}\right)}_{\Phi_{ij}} x_j - \underbrace{\frac{N_i}{c_t D_{in}/\ell}}_{\Phi_{ij}}$$

almost there...

$$\frac{\mathrm{d}x_i}{\mathrm{d}\eta} = \underbrace{\left(\frac{N_i}{c_t D_{in}/\ell} + \sum_{j \neq i}^n \frac{N_j}{c_t D_{ij}/\ell}\right)}_{\Phi_{ii}} x_i + \underbrace{\sum_{j \neq i}^{n-1} \left(\frac{N_i}{c_t D_{in}/\ell} - \frac{N_i}{c_t D_{ij}/\ell}\right)}_{\Phi_{ij}} x_j - \underbrace{\frac{N_i}{c_t D_{in}/\ell}}_{\Phi_{ij}}$$

$$\frac{\mathrm{d}(x)}{\mathrm{d}\eta} = [\Phi](x) + (\phi)$$

 $\Phi_{ii} = \frac{N_i}{c_t D_{in}/\ell} + \sum_{k \neq i}^n \frac{N_k}{c_t D_{ik}/\ell},$

A system of linear ODEs with constant coefficients $(c_t, N_j \text{ are constant})$

$$\Phi_{ij} = N_i \left(\frac{1}{c_t D_{in}/\ell} - \frac{1}{c_t D_{ij}/\ell} \right),$$

$$\phi_i = -\frac{N_i}{c_t D_{in}/\ell}$$

Analytic solution (assuming N_i are all constant)

see T&K §8.3 and Appendix B

$$(x) = \left[\underline{\exp\left[\left[\Phi \right] \eta \right]} \right] (x_0) + \left[\left[\underline{\exp\left[\left[\Phi \right] \eta \right]} \right] - \left[I \right] \right] \left[\Phi \right]^{-1} (\phi)$$

Matrix exponential! $\exp[\Phi] \neq [\exp(\Phi_{ij})]!$

In Matlab, use "expm"

Note: if we had not eliminated the "nth" equation, we could not form the inverses required here.

Algorithm:

- I. Guess N_i
- 2. Calculate $[\Phi]$, (ϕ)
- 3. Calculate (x) at $\eta=1$ ($z=\ell$)
- 4. If (x_{ℓ}) matches the known boundary condition, we are done. Otherwise return to step 1.

Note: we could also solve the equations numerically in step 3 and eliminate step 2 (work straight from the original Maxwell-Stefan equations)

Later in the course, we will show another way of getting N_i .

Matrix Form of Maxwell-Stefan Equations

$$\mathbf{d}_{i} = -\sum_{j \neq i}^{n} \frac{x_{j} \mathbf{N}_{i} - x_{i} \mathbf{N}_{j}}{c D_{ij}},$$

$$= -\sum_{j \neq i}^{n} \frac{x_{j} \mathbf{J}_{i} - x_{i} \mathbf{J}_{j}}{c D_{ij}} -$$

$$\sum_{i=1}^{n} \mathbf{d}_i = 0$$
 Easily shown for the case we have addressed thus far, $\mathbf{d}_i = \nabla x_i$.

Only n-1 of these equations are independent.

For a binary system, we have:

$$\nabla x_1 = -\frac{x_2 \mathbf{N}_1 - x_1 \mathbf{N}_2}{c_t D_{12}},$$

$$\nabla x_2 = -\frac{x_1 \mathbf{N}_2 - x_2 \mathbf{N}_1}{c_t D_{21}}$$

Show that these sum to zero.

Eliminate J_n from the set of n equations $\Rightarrow n-1$ equations.

$$\mathbf{J}_{n} = -\sum_{j=1}^{n-1} \mathbf{J}_{j} = -\mathbf{J}_{i} - \sum_{\substack{j=1\\j \neq i}}^{n-1} \mathbf{J}_{j}$$

$$\mathbf{d}_{i} = -\sum_{\substack{i \neq i}}^{n} \frac{x_{j} \mathbf{J}_{i} - x_{i} \mathbf{J}_{j}}{c_{t} D_{ij}},$$

$$c_t \mathbf{d}_i = -\mathbf{J}_i \sum_{\substack{j=1 \ j \neq i}}^n \frac{x_j}{D_{ij}} + x_i \sum_{\substack{j=1 \ j \neq i}}^n \frac{\mathbf{J}_j}{D_{ij}},$$
 Split the summation into individual terms. Recall that we don't have a D_{ii} term!

$$= -\mathbf{J}_{i} \sum_{\substack{j=1 \ j \neq i}}^{n} \frac{x_{j}}{D_{ij}} + x_{i} \sum_{\substack{j=1 \ j \neq i}}^{n-1} \frac{\mathbf{J}_{j}}{D_{ij}} + x_{i} \frac{\mathbf{J}_{n}}{D_{in}}, \quad \text{lsolate the } n^{\text{th}} \text{ diffusive flux.}$$

eliminated the nth diffusive flux
$$= -\mathbf{J}_i \sum_{\substack{j=1\\j\neq i}}^n \frac{x_j}{D_{ij}} + x_i \sum_{\substack{j=1\\j\neq i}}^{n-1} \frac{\mathbf{J}_j}{D_{ij}} - \frac{x_i}{D_{in}} \left(\mathbf{J}_i + \sum_{\substack{j=1\\j\neq i}}^{n-1} \mathbf{J}_j \right),$$

Gather
$$\mathbf{J}_i$$
 and \mathbf{J}_j terms $= -\mathbf{J}_i \left(\frac{x_i}{D_{in}} + \sum_{\substack{j=1 \ i \neq i}}^n \frac{x_j}{D_{ij}} \right) + x_i \sum_{\substack{j=1 \ i \neq i}}^{n-1} \left(\frac{1}{D_{ij}} - \frac{1}{D_{in}} \right) \mathbf{J}_j$

Define diagonal and off-diagonal matrix entries. $-B_{ii}\mathbf{J}_i - \sum_{j\neq i}^{n-1} B_{ij}\mathbf{J}_j$

$$\begin{array}{lcl} c_t\mathbf{d}_i & = & -\mathbf{J}_i\left(\frac{x_i}{D_{in}} + \sum\limits_{\substack{j=1\\j\neq i}}^n \frac{x_j}{D_{ij}}\right) + x_i\sum\limits_{\substack{j=1\\j\neq i}}^{n-1} \left(\frac{1}{D_{ij}} - \frac{1}{D_{in}}\right)\mathbf{J}_j, & \text{of the Maxwell-Stefan equations} \\ & = & -B_{ii}\mathbf{J}_i - \sum\limits_{j\neq i}^{n-1} B_{ij}\mathbf{J}_j \end{array}$$

$$n$$
-1 dimensional c_t matrix form:

$$c_t(\mathbf{d}) = -[B](\mathbf{J}) \qquad B_{ii} = \frac{x_i}{D_{in}} + \sum_{j \neq i}^{n} \frac{x_j}{D_{ij}},$$

$$B_{ij} = -x_i \left(\frac{1}{D_{ii}} - \frac{1}{D_{im}}\right)$$

$$c_{t} \begin{pmatrix} \mathbf{d}_{1} \\ \mathbf{d}_{2} \\ \vdots \\ \mathbf{d}_{n-1} \end{pmatrix} = - \begin{bmatrix} B_{1,1} & B_{1,2} & \cdots & B_{1,n-1} \\ B_{2,1} & B_{2,2} & \cdots & B_{2,n-1} \\ \vdots & \vdots & \ddots & \vdots \\ B_{n-1,1} & B_{n-1,2} & \cdots & B_{n-1,n-1} \end{bmatrix} \begin{pmatrix} \mathbf{J}_{1} \\ \mathbf{J}_{2} \\ \vdots \\ \mathbf{J}_{n-1} \end{pmatrix}$$

Note: we can write this in n-dimensional form, but then $[B]^{-1}$ cannot be formed.

Fick's Law

Maxwell-Stefan Equations (matrix form)

Fick's Law (matrix form)

$$c_t(\mathbf{d}) = -[B](\mathbf{J})$$

$$c_t(\mathbf{d}) = -[B](\mathbf{J})$$
 \longrightarrow $(\mathbf{J}) = -c_t[B]^{-1}(\mathbf{d})$ so far,
 $= -c_t[D](\nabla x)$ $\mathbf{d}_i = \nabla x_i$.

Some Observations:

- For an ideal gas mixture, the D_{ij} are largely independent of composition (but are functions of T and p), while the D_{ij} are complicated functions of composition.
- The Fickian diffusion coefficients (D_{ij}) may be negative, while $D_{ij} \ge 0$.
- The binary diffusivity matrix is symmetric ($D_{ij} = D_{ji}$) but the Fickian diffusivity matrix is not symmetric $(D_{ij} \neq D_{ji})$.
- Note that D_{ii} never enter in to any expression, and have no physical meaning. However, the Fickian D_{ii} enter directly into the expression for the fluxes, and represent the proportionality constant between the driving force and the diffusion flux for the i^{th} component.
- D_{ij} are independent of reference frame. D_{ij} is for a molar-averaged velocity reference frame.

Binary/Ternary Comparison

$$\sum_{i=1}^{n} x_i = 1 \quad \Rightarrow \quad \sum_{i=1}^{n} \nabla x_i = 0$$

Binary Diffusion

$$\nabla x_2 = -\nabla x_1$$

Ternary Diffusion

$$\nabla x_1 = -\nabla x_2 - \nabla x_3$$

Diffusion Regimes

$$(J) = -c_t[D](\nabla x)$$

Binary Diffusion

$$\mathbf{J}_1 = -c_t D \nabla x_1$$

$$\mathbf{J}_1 = -c_t D_{11} \nabla x_1 - c_t D_{12} \nabla x_2,$$

$$\mathbf{J}_{2} = -c_{t}D_{21}\nabla x_{1} - c_{t}D_{22}\nabla x_{2}.$$

Multicomponent Effects

$$(\mathbf{J}) = -c_t[B]^{-1}(\mathbf{d})$$

$$\begin{pmatrix} \mathbf{J}_{1} \\ \mathbf{J}_{2} \\ \vdots \\ \mathbf{J}_{n-1} \end{pmatrix} = -c_{t} \begin{bmatrix} D_{1,1} & D_{1,2} & \cdots & D_{1,n-1} \\ D_{2,1} & D_{2,2} & \cdots & D_{2,n-1} \\ \vdots & \vdots & \ddots & \vdots \\ D_{n-1,1} & D_{n-1,2} & \cdots & D_{n-1,n-1} \end{bmatrix} \begin{pmatrix} \mathbf{d}_{1} \\ \mathbf{d}_{2} \\ \vdots \\ \mathbf{d}_{n-1} \end{pmatrix}$$

For multicomponent effects to be important, $D_{ij}\nabla x_j$ must be significant compared to $D_{ii}\nabla x_i$.

$$\left| \frac{D_{ij} \nabla x_j}{D_{ii} \nabla x_i} \right| \sim \mathcal{O}(1)$$

$$\left| \frac{D_{ij}}{D_{ii}} \right| \sim \mathcal{O}(1)$$

$$\left| \frac{D_{ij}}{D_{ii}} \right| \sim \mathcal{O}(1)$$

$$\left| \nabla x_j \neq 0 \right|$$

Fick's Law & Reference Velocities

How do we write Fick's law in other reference frames?

- $(\mathbf{J}) = -c[D](\nabla x)$ Molar diffusive flux relative to a molar-averaged velocity.
- $(\mathbf{j}) = -\rho_t[D^\circ](\nabla \omega)$ Mass diffusive flux relative to a mass-averaged velocity.
- $(\mathbf{J}^V) = -[D^V](\nabla c)$ Molar diffusive flux relative to a volume-averaged velocity.
- Option 1: Start with GMS equations and write them for the desired diffusive flux and driving force. Then invert to find the appropriate definition for [D].
- Option 2: Given [D], define an appropriate transformation to obtain $[D^{\circ}]$ or $[D^{V}]$.

$$[D^{\circ}] = [B^{uo}]^{-1}[\omega][x]^{-1}[D][x][\omega]^{-1}[B^{uo}]$$
$$= [B^{ou}][\omega][x]^{-1}[D][x][\omega]^{-1}[B^{ou}]^{-1}$$

$$B_{ik}^{uo} = \delta_{ik} - \omega_i \left(\frac{x_k}{\omega_k} - \frac{x_n}{\omega_n} \right)$$

$$B_{ik}^{ou} = \delta_{ik} - \omega_i \left(1 - \frac{\omega_n x_k}{x_n \omega_k} \right)$$

$$[D^V] = [B^{Vu}][D][B^{Vu}]^{-1}$$

= $[B^{Vu}][D][B^{uV}]$

$$B_{ik}^{Vu} = \delta_{ik} - \frac{x_i}{\bar{V}_t} \left(\bar{V}_k - \bar{V}_n \right)$$

$$B_{ik}^{uV} = \delta_{ik} - x_i \left(1 - \frac{V_k}{\bar{V}_n} \right)$$

T&K Example 3.2.1

Given $[D^V]$ for the system acetone (1), benzene (2), and methanol (3), calculate [D].

$$(\mathbf{J}) = -c[D](\nabla x) \qquad (\mathbf{j}) = -\rho_t[D^\circ](\nabla \omega) \qquad (\mathbf{J}^V) = -[D^V](\nabla c)$$

$$(\mathbf{j}) = -\rho_t [D^{\circ}](\nabla \omega)$$

$$(\mathbf{J}^V) = -[D^V](\nabla c)$$

Diffusivities in units of 10⁻⁹ m²/s

$$[D^V] = [B^{Vu}][D][B^{Vu}]^{-1}$$

= $[B^{Vu}][D][B^{uV}]$

$$\bar{V}_1 = 74.1 \times 10^{-6} \frac{\text{m}^3}{\text{mol}}$$

$$\bar{V}_2 = 89.4 \times 10^{-6} \frac{\text{m}^3}{\text{mol}}$$

$$\bar{V}_3 = 40.7 \times 10^{-6} \frac{\text{m}^3}{\text{mol}}$$

_						
1	x_1	x_2	D_{11}^V	D_{12}^V	D_{21}^V	D_{22}^V
	0.350	0.302	3.819	0.420	-0.561	2.133
	0.766	0.114	4.440	0.721	-0.834	2.680
	0.533	0.790	4.472	0.962	-0.480	2.569
_	0.400	0.500	4.434	1.866	-0.816	1.668
	0.299	0.150	3.192	0.277	-0.191	2.368
_	0.206	0.548	3.513	0.665	-0.602	1.948
	0.102	0.795	3.502	1.204	-1.130	1.124
	0.120	0.132	3.115	0.138	-0.227	2.235
_	0.150	0.298	3.050	0.150	-0.269	2.250