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Several studies have utilized “leading points” apts to explain the augmentation of burning ratesmibulent flames by
flow fluctuations. These ideas have been partigulatilized to explain the strong sensitivity ofetlburning rate to fuel
composition. Leading point concepts suggest thabtirning velocity is controlled by the velocitytbe points on the flame
that propagate farthest out into the reactantsis,tthey de-emphasize the classical idea that toyiwelocity enhancement
is due to increases in flame surface area. Ratlhihin this interpretation, flame area creationhe effect, not the cause, of
augmented turbulent burning velocities. Howeveg theory behind the implementation of leading paahcepts in
turbulent combustion modeling needs further develemt and the definition of “leading point” has heten fully clarified.
For a certain class of steady shear flows, it iaightforward to demonstrate the leading point emtdn an intuitive
manner, but the problem becomes more complex wietetding points themselves evolve in time. Iis fiaper, we use
the G-equation to describe the flame dynamics atilizing results for Hamilton-Jacobi equationsrfrahe Aubry-Mather
theory, show how the large-time behavior of itasuiohs under certain conditions is controlled objydiscrete points on
the flame, whose space-time evolution in charatierispace forms a set of “optimal characteristidddwever, it is
possible to find other conditions where the laigeetbehavior of the flame is not controlled by déte points on the flame,
but rather by its entire surface. Moreover, w® alsow that even in cases where the burning raterigolled by discrete
points, these points are not necessarily the neosiafd lying points in the flame front. Finally, weensider the case where
the laminar flame speed is a weak function of flamevature and derive exact results for the sefityitof the front speed to
the Markstein length,/, for ¢>0. These solutions explicitly illustrate the redoatiof front displacement speed for

increasing/ , a result previously suggested by measurements.

1. Introduction

The propagation of premixed flames in turbulentvids a problem of wide practical interest, witkignificant
literature on their propagation speed, consumptete, and front topology. While certain scalingsd grarametric
dependencies are well understood, a variety oflpnad remain [9]. For example, it is well known tHiael/oxidizer
composition has a strong influence on turbulennimg rates [34]. However, the understanding andetiog of these
effects is still in its infancy [15]. Similarly, ghextent to which the turbulent burning rate exkilda “bending” or
saturation at high turbulence intensities is stiff well understood.

Classical explanations for augmentation of turbulemrning rates of premixed flames by turbulentoeély
fluctuations rely on "global" arguments relating ftame area [13] - i.e., in constant burning vefpdiames, the
turbulent burning velocity increase is directly pootional to the increase in flame surface are&eygoal of modeling
approaches within this framework is to scale theedelence of the surface area weighted burningugate turbulence
intensity and scale size. An alternative approadtderstand turbulent augmentation of burningsreéased upon so-
called "leading points", which are intrinsicallgcal properties of the turbulent flame. This concept veaiginally
proposed by Zeldovich [55], who described the "legfpilot” points as the most forward-lying poirtkthe flame front
in the direction of the reactants. This idea walsseguently expanded on in a number of references3a). In a
turbulent premixed flame, the largest velocity fuations in the direction of propagation createveonbulges with
respect to the reactants which generate flame @deea behind them and determine the average ctimibwelocity.
Thus, leading points are loosely defined as padificurved points on the turbulent flame front tipabpagate out



furthest into the reactants in spatial regions whirbulent eddies induce low approach flow velesit Within this
interpretationaugmentation of flame surface area is the effeat@fased burning rates, not the fundamental cause

This concept has been invoked by several investigeb explain the effect of fuel/oxidizer compasit on
turbulent burning rates of premixed flames [34, 4&). In the leading point concept framework ipisstulated that the
modifications in the overall turbulent combustigresed depend solely on modification of the burniatg rat the leading
points since an increase (decrease) in the avgnagagation speed of this points causes more (fsag area to be
produced behind them. Modeling of turbulent burniatgs by leading point concept, then, can be thibag consisting
of two sub-problems: the modeling of burning reaeshe leading points and the modeling of the dyinafstatistics of
the leading points in the turbulent flame. Thetfgeoblem has been treated previously by modelieghturning rate of
the leading point using results derived from caocaingeometries, such as quasi-steady “criticaltyétshed flamelet [3]
(stationary curved flame ball [2], expanding sptariflames of small radius [27, 32] and planagadly opposed-flow
twin flames near extinction [31, 46, 48]) or by empirical formula based on some "effective” Lewisniber of the
mixture [14, 38, 39].

Turning to the second problem — modeling the dyarof the leading point itself — few results araikable,
mainly because the basic leading point argumealfits somewhat phenomenological and remains tpuieon firm
theoretical footing. There are two instances whieedeading points concept can be clearly proveidst, application of
the KPP (Kolmogorov-Petrov-Piskunov) theorem [14)], & a Reynolds averaged progress variablequation (using a
gradient diffusion closure and a few other assuomgtion the average reaction rate [33]), can be tssHow that the
turbulent flame speed is controlled by the charaties of the average reaction rate at the leadidge of the flame
brush, i.e., the points where - 0, in a statistically stationary one dimensionalfa Within this framework, the
“leading point” is defined as the point whete— 0; we will refer to this point/surface as the “flarheush leading
point” in this paper. Note that within this integpation, the flame does not possess leading pfntthe majority of
time instants, as the point on the flame that intstaeously lies farthest into the reactants mayiooeer a range ot
values. We will refer to these points as “instartars leading points”, indicated by the yellow “xi' Figure 1. This
figure reproduces an image from Marshetllal. [36], where the instantaneous flame front is aidrlon top of time
averaged progress variable contours. In this gzaper, we analyze the curvature statistics of thetn the flame that
lies farthest into the reactants: for 90% of tlzarfé realizations this position occurs over €hé2< ¢ < 0.6€ range, with
an average location a [10.24- 0.3C, depending on turbulence intensity and fuel corntipos Indeed, thec - 0 in
any real data set of finite size lies at the puihere a single realization of the flame occurs.
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Figure 1. Mie scattering image from LSB burner of Marshall et al. [36] (d = 36mm, 50/50 H/CO, 0.55 equivalence ratio, STP
conditions). Flame edge (green), instantaneous léad point (yellow x) and average progress variableg , (white) overlaid
onto the raw image.

The second example that clearly shows the sigmifieaf the leading points in uniquely controllimg tourning
velocity is shown in Figure 2a, following Ref. [4d]his figure illustrates an initially flat flameqpagating in a spatially
varying, but temporally steady state, flow fieldvitnich the velocity isocontours are parallel to theection of flame

propagation. Consider the case where the laminamirvelocity, 5 , is constant, then it is seen that the portiothef
flame at the highest velocity point, point “B” ihd figure, propagates out the fastest. In the ild@fcoordinate system,



the flame at Point B moves at a speedsof (Au)LP, where the subscripLP” denotes the leading point. Moreover, it

can easily be shown by a front tracking computattaat, after an initial transient, the entire froaiches a stationary
shape and propagation speed with the va{ue(Au)LP as shown in Figure 2b. As such, the front disptaa speed is

controlled by the leading points of the flame thatpagate into the highest velocity regions ahdatthe flame. This
example clearly illustrates that the resulting &ase in flame area induced by the spatially varyigcity field is the
effectof the higher displacement speed, notdhase Finally, note that in this steady state examthie, “flame brush
leading point” and “instantaneous leading pointhcade.
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Figure 2. Model problem of a flat flame propagatinginto a spatially varying flow field (a); level setcomputation of the model
problem, where the initial and final steady-state lame shapes are shown (b) [46].

More generally, if the unidirectional velocity fiels given byu(x) = f(x), then it can be shown by a simple

geometric reasoning that the burning velocity agdaimes is given bys + max( f(x)) (proved formally in Appendix

B). In other wordsthe burning velocity is controlled by conditions atdiscrete spatial poinbr points and is
independent of the initial conditions and the dstaif the flow field, such as the scale size of tredocity
inhomogeneities.

This latter model problem becomes more complicatdtn the angle of flame propagation is not pdradie
velocity isocontours. In this case, the spatialitpms of the leading point evolves in time, as anpthat was propagating
into the lowest velocity portion of the flow advascand moves into a higher velocity region. Foltgyihe terminology
of Ref. [47, 48], the leading point may no longer fguasi-steady”, and it is unclear how to applsdieg points
argument in this case, or if this approach is exaditl. This paper takes up this problem in detaibider to examine the
dynamical significance of leading points, and ttedmine whether conditions exist where the propagatelocity may
be controlled not by a point, but by a distributidpecifically, this paper considers the passive. (vithout gas
expansion) propagation of a premixed flame in adineensional, incompressible, unsteady, periodéasifiow. In this
context, it proposes a definition for points thabtol the displacement speed of the front, andissutheir dynamics.
This type of flow configuration has been previoustydied as a model problem for flame propagationihomogeneous
flow field [1, 5-7, 10, 29, 30, 45, 54], with th&pecific velocity field considered explicitly by End et al.[18], who
presented an exact solution for the front displaa@nspeed. This problem is re-interpreted withia lgading points
framework in this paper.

The paper is organized in the following manner.tidac2 describes a few results from the theory afriiton-
Jacobi equations, which, when applied to the G-gguialead to our proposed mathematical formulatidreading
points. These ideas are then applied to a spestifar flow in Section 3, chosen because the irsianus leading points
evolve temporally, but also because is amenablentexact solution. The laminar flame spegdis assumed to be
constant in Sections 2 and 3. Section 4 then cersideneralizations of these results to the casrenthe burning
velocity has a linear dependencespbn curvature, with a positive Markstein length,Finally, the Conclusions section

considers the extension of these results to thé-thiuhensional case.

2. Problem formulation and mathematical background

2.1 Problem formulation
To model the reaction front propagation, we utilizeG-equation41]:



%—?+U(X,t)DDG:§|DG| )
where the level set of the scalar functiGnrepresents the flame positioﬁ(?(, t) is the flow velocity at the flame and
S is the (constant) laminar flame speed. Assuming@dimensional flame front whose location is agiénvalued

function, &, of the coordinatex (see Figure 3), we defin@(x, Y, t) =£(x Y)— y which inserted in equation (1) leads
to:

¢ o _ &Y
E+ux(x,t)& u(xt)=s l+(axj (2)

Equation (2) is a Hamilton-Jacobi equation, whosenvex Hamiltonian function is represented by
H=H (x,t, g) =-gJl+ §+y g y where g =0¢/0x is the flame slope and satisfies the conservatpration
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Figure 3. Schematic of a two-dimensional flame whesposition is a single valued function of thg coordinate.

In this paper, we assume thaj and u, are periodic in(x,t) with period [O,L]X[O,T] and form an
incompressible flow field. We are interested in stigdy of the front displacement speed at large tisp, defined as:

H(xt g dxdt for t. +w 4)
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Under the above assumptions, it can be shown shagxists [11], but equation (2) can admit more tbae entropy

solution for the same value of [49]. In the context of multiscale expansions @nillton-Jacobi equations; is also
referred to as the “homogenized (or effective) Haomian” (see Appendix A).

2.2 Aubry-Mather theory

In this section we present several results, prdyeWeinan [49], who utilized the Aubry-Mather thgd87] to
study periodic solutions of one dimensional conaon equations of the form of equation (3). Staith a few
definitions. The characteristic curves associatitd equation (3) satisfy the system of ordinaryetiéntial equations

dx aH
a)
dt ag ®)
dg _ oH
hy ==—-—
dt 0X



Characteristics curves describe solutions of equdg) away from discontinuities in the graph gfwhich are known
as “shocks” and represents cusps in the grap# .o8olutions of equation (2) admit also a variatlorgoresentation
given by

é(xt)= min {J L(¥(s).s¥(9) ds-&(x(7) ,T)} (6)

YOAC, y(t)=x

for every r <t, whereAC represents the set of all Lipschitz continuouthggt:R -~ R and L is the Lagrangian
function (or Legendre transform) associated with tamiltonianH :

L(xty) = suf{g - H(xtg) =y $-(r-u)" + y (7)

Equation (6) is known as the “Lax formula” [19]time context of partial differential equation thearyd the “principle
of least action” [50] in the context of Hamiltoniasynamical systems theory. It can be demonstrabted the
characteristic curves are solutions of the miniti@eproblem (6) and from equation (5)a we have:

,_dx_0H

&t og (8)

From a physical point of view, the Lagrangian représ the propagation speed in yhdirection of the point on the
flame surface that follows the trajectory of theadcteristic curvey . Those curvesy, which solve equation (6) on

intervals (—w,t] are referred to as “one-sided minimizers” and “siged” (or global) minimizers if they solve it on
intervals (—co, +0).
We now can state Weinan'’s results [49]:
1) For each(x,t)0[0,L]x[0,T] at which & is differentiable with respect t& (i.e. away from shocks in the graph of
g ) there exists a unique one-sided minimizer;

2) There exist curves/ which solve equation (6) for any interv[ijo,tl] (i.e. yis a global minimizer) and is
differentiable with respect ta for each(x,t) = (y* (t) ,t) ; the Aubry-Mather sef ,,, associated with a solutiofi

of equation (2) is defined as:
Cam () :{(y(O) ,g(y(O) 0)) st.y is a global minimiz}al (9)

3) For each one-sided minimizey there exists a global minimizeyy associated with sy such that

|y(t)—y* (t)| ~0ast - -,
Using result (2) and equation (6), it follows tliat large times the front displacement speed (#)lm@expressed as:

s =1Ly Oy Q) =27 (-l O 4) + yl7 (1)) o )

2.3 Definition of Aubry-Mather Leading Points
To understand the physical meaning of the resufisgmted in the previous section it is useful sualize the

Aubry-Mather set in thex—t plane as the union of all global minimizey*s(t). Let us return to the problem considered
in the Introduction - an initially flat flameg(x,0) = g(x,0)= 0, propagating in a steady periodic flow field,



u, = Acos( 2Ty L) , with no transverse flom), =0. In this case, the characteristic curves cantaimed by solving
Eq.(5) analytically [45]. Figure 4 plots the temaloevolution of g and & for A/s=0.5. It can be seen that, after an
initial transient, the solution develops a shockha graph ofg (a cusp the graph of ) at x/L =0.5, which grows

until the steady state is reached. The charadtsristirves of these solutions are plotted in et plane in Figure 5.
Note that the only trajectories that are never diEb by the shock correspond to the positions wigres maximum.

These trajectories, according to result (2) inghevious paragraph, represent the global minimiaads from Eq. (10),
the front displacement speed can be readily obdadise

s =Atg (11)

The characteristic curve trajectories that belong te tAubry-Mather set uniquely determine the largestimehavior of
the flame propagatiann contrast, the dynamics of the one-sided mipars, which form the “domain of attraction” of
the shock [25], determines the overall shape oflthree (as it will become clearer in next paragdaplt do not provide
any information about the large-time front displaeat speed.
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Figure 4.Flame slopeg (a) and flame shape¢ (b) at different normalized times t(s_ /L) for the flow field
u, = Acos(277x/L), u, =0 with A/s =05.
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Figure 5. Characteristics curves in thex -t plane for the solutions showed in Figure 4. Onedd minimizers are represented
by variously colored thin lines, global minimizersby thick red lines and the shocks trajectories bytick blue dot-dashed lines.

We define “Aubry-Mather points” as those parts lué flame that belong to the Aubry-Mather set, whose
propagation follows the trajectories of the glob@himizers.However, in general, the global minimizers may et
isolated trajectories and, as such, they may notliserete points on the flanss the name “leading points” seems to
suggest. For instance, if in the example above a# thosen a function with degenerate (i.e. witho z&econd
derivative) absolute maxima to represent the stedudar flow profile, then the trajectories of tHebgl minimizers
could originate from a continuous band of spat@sifions. This is one of the reasons why, in re&itcited in the
previous section, uniqueness of global minimizerseach spatial period is not guaranteed. In thaesbrof the



Hamiltonian dynamical system defined by equatid)swhen the trajectories of the global minimizars isolated from
each other, they are also known as “hyperboliettayies” [50]. When the system is autonomous, fivehout explicit
time dependence, as for the example of Figure 4Fagare 5) they may be also referred to as “hyplstfoced (or
equilibrium) points”, since they are equilibriumipts for the characteristics in Eq. (5). In the e¢ax a flame

propagating in a unidirectional steady shear flay £ f (x) , u, =0), it can be shown that the Aubry-Mather points are
hyperbolic points (i.e. a finite number of isolatpdints) only if f(x) possesses a finite humber of non-degenerate

absolute maxima fon(D[O, L] [35]. Thus, this analysis suggests a third potemgiading point definition, which we

refer to as the “Aubry-Mather Leading points”, ege parts of the flame that belong to the AubryHdaset, in the
case where these points belongs to hyperbolicctajes.

3. Model problem

In this section we consider a flame propagating periodic steady shear flow = f (x) with a constant mean

transverse windi, =V = 0. Equation (2) admits an analytical solution [18] this flow field, which is reproduced in the
Appendix A. With a change in coordinate systens fhrioblem is also equivalent to a flame propagadingn angle of
a =tan™(V/s;) to the velocity isocountours af, . In this framework, the mean transverse windcan be interpreted

as a parameter of the “unsteadiness” of the aleal fu, since in a reference frame attached to the trassvitow
(moving in thex-direction with velocityV ) the Galilean transformations

t>f:—tx+Vt lLﬁ;:;—V—O (12)
y y

eliminate the transverse mean flow, with the stieav now being time dependent, (x t)= f(X-Vt). In this new

reference frame, the shear is therefore actingreriame with a time-scale given lyV , where L is the spatial period

of uy(x). The competition between this time scale and ithe scale associated with flame propagation, whih be

taken as proportional td/s , generates rich and interesting behavior [10].fdat, the rate at which the front

displacement speed. is enhanced by increasing flow intensity is reduced as the unsteadin&ssgrows, analogous

to one of the mechanism leading to the “bendingatffdiscussed in the turbulent combustion litenaf{].
In order to develop our examples, we consider teroglic flow fields: one consisting of a single mamnic

u, (X) = Acog( 27 1) (13)
and one with multiple harmonics

Acos( 27 ¥ L)+§ sin 27 Q+—';‘ cob # X |)+L;‘ cqs76 ¥ Q_TAGJ in76% I)+—': dosr & ) (14)

allN

u, (x) =

The shear flow (14) was considered also in refereiit7, 18] as an example of a profile with a cawrptructure and
an asymmetrical form with multiple local maxima anthima. Figure 6a shows the dependence.0bn the shear flow
amplitude A for both profile (13) and (14) at different valué “ansteadiness parameterV, . Its inhibiting effect is
illustrated by the fact that when no unsteadinsgwésent\ =0) S. depends linearly orA, and is given by equation
(112) for both shear flow profiles, while the fragdisplacement speed monotonically decreases foeasangV . Figure
6b replots these same data in terms of normalinbdrecement of the displacement spéerd— q)/ A in order to better
illustrate this effect. Here, the significance ofrieasingy on decreasing the displacement speed is cleaoywishAt
large enough values of , s. always asymptotes tg . However, s, exceedss for a larger range of values with
increasing amplitudeA .
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Figure 6. Dependence of front displacement spees} on shear flow amplitude A for fixed unsteadiness parameteV/ (a).
Normalized enhancement of displacement spee(d;r - sL)/A as a function of unsteadiness parametev at fixed shear flow

amplitude A (b). Solid lines refer to the shear flow profile {3) while dashed lines refer to the shear flow prdé (14).

The classical interpretation of these effects ieims of flame area. To illustrate, Figurpl@ts flame shapes at
the steady state for a fixed shear flow amplitud¢q =0.5) and different values of transverse wind intensitycan be
observed how the overall flame area decreaseseasn$teadiness parametér increases. However, this explanation
does not clarify why, for certain values & and V , the front displacement speed is identical fortthe shear flow
configurations, while it is different for other cbination of A andV . Specifically, Figure Gshows thats, values are
different for the two shear flow profiles (i.e. ti@sl and solid lines are not superimposed) for largkies of
unsteadinesy .
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Figure 7. Flame shapeé for A/s =0.5and different values ofV/s_ for both profile (13) (a) and profile (14) (b). Tte graphs
of & are adjusted so that their average is zero. “AubrMather leading points” are indicated by black cirdes (which only exist
for the V/s_ =0 and 0.5 cases); “instantaneous leading pointsite indicated by red crosses.

We now show that the differences in the occurrexfdbe inhibiting effect between shear flow profli3) and
(14) can be interpreted in terms of the dynamicglobal minimizers (i.e. in terms of the “Aubry-Metr leading
points”). First we remark that both profiles (13)da(14) have only one absolute maxima per perieduwing at
x=KkL (kD N) , Whereu, (kL) = A. According to the discussion in the previousisecthen, forv =0 the solution of

equation (2) possess a unique hyperbolic globalimimer per period whose position coincides with diesolute
maxima in velocity. A convenient way to visualizeetglobal minimizers in thex—t plane is to solve the characteristics
equations (5) backward in time since, as statecsnlt 2) in the previous section, all the chandsties curves (one-
sided minimizers) converge to the global minimizenst - —c [40]. Figure 8 and Figure 9 illustrate these badakiva

characteristic curves for the solutions plottedrigure 7. Figure 8a and Figure 9a show that wheansteadiness in the



flow is present /5 =0) the global minimizers ax = kL (kDN) are hyperbolic fixed points for both shear flow

profiles. Then, from equation (10), it is cleamthboth profiles yield the same front displacemepéed since
uy(kL) = A. This conclusion is not influenced by the trajeéiet® of the one-sided minimizers which determine th
details of the flame shape and depend on the fértimeoshear flow profileu, . From Figure 8b and Figure 9b, it is clear
that a limited amount of “unsteadiness” in the fldaes not alter the trajectory and the hyperbdiaracter of the global
minimizers. In this case, the front displacemgresl and its observed bending with increasinare the same for both
shear flows. Examining the flame shapes plotteigure 7 forV/5 =0.5, it also interesting to notice that the discrete
global minimizer trajectory does not correspondhe most forward-lying position of the flamei-e., the “Aubry-
Mather leading points” and the “instantaneous leaglipoints” do not coincide In other words, the points controlling
the front displacement speed are not the most follyéng position of the flame front in the direati of the reactants.

A bifurcation in solution characteristics occursemhthe unsteadiness paramedr, reaches a critical value.
For example, in Figure 8c and Figuredkthe trajectories are global minimizer and theipénpolic character is lost. In

this case, the trajectories of the global mininszéepend on the spatial details of the shear flouctire, and the two
profiles (13) and (14) yield different values abriit displacement speed according to equation (10).
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Figure 8. Backward characteristic curves in thex -t plane corresponding to the solutions shown in Fige 7a (shear flow

profile of equation (13) with A/s =0.5).
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Figure 9. Backward characteristic curves in thex -t plane corresponding to the solutions shown in Fige 7b (shear flow
profile of equation (14) with A/s =0.5).

From the analytical solution, it is possible toveofor the parameter valueA andV where the hyperbolic
fixed point is lost, as plotted in Figure 10. Thgufe shows that fo > g the unsteadiness is too high and no fixed

points are presents for all values Af. At low A values, the fixed point can be lost even at lovadues ofV . This
situation mirrors the trends shown in Figure 6.
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Figure 10. Parameter spaceA-V divided into regions in which solutions of the modl problem admit and do not admit
hyperbolic global minimizers. Dots indicate the coditions at which solutions plotted in Figure 7 areobtained.

Two key results emerge from this section. Firstjer certain conditions, the front displacemenesdpe controlled by
velocity field characteristics at discrete points the flame, points we define as “Aubry-Mather legdpoints”.
However, these points do not generally lie on #réhest forward point of the front (the “instantans leading point”).
Under these conditions, two totally different vetpcfields with the same maximum value lead to fileal front
displacement speeds. Second, for other condittbesfront displacement speed is not controlledlisgrete points, but
rather by the entire spatial distribution of thdoeity field. For these conditions, the “instantans leading points” do
not have any dynamical significance in controllthg front displacement speed. The extent to whielsé two results
modify proposed leading point arguments as arttedlén the Introduction remains to be seen, howeagrcare must be
exercised in translating results from this deterstio problem to the ensemble average charactsistf a stochastic
problem that is of interest to determining the frdisplacement speed.

4. Curvature effects

The previous section considered the case wherkathi@ar burning velocity was constant. In realityis well
known that the laminar burning velocity is a functiof the flame stretch rate for reactants with-nero Markstein
lengths that, in turn, is a function of the locllw shear and flame curvature. For example, seM@N$ studies of
turbulent premixed flames have shown that locahgea of flame speed correlate strongly with thall@tirvature of
the flame front [34, 43]. In this section, we ingorate a curvature sensitivity into the burningoedly, by means of the
following expression, valid for weak stretch:

0°&/ox?

(1+(o¢/ ax)z)a%2 e

S =§,.(1-tk)= 5, 1+¢

where s, represents the laminar unstretched flame spédd,the Markstein length and represents the curvature.

For weak curvature (i.e., where the amplitude dhlding is small relative to the transverse lengtale of wrinkling),
this expression can be further linearized and, whserted into the G-equation, yields an additidmecous” term [28]:

06 0& o0&\ 02¢
E—Fux&_uy_ So 1+(&j + %,0%7 (16)

In this section, we consider the evolution of etprat(16) for />0 (i.e. a positive Markstein length, a thermo-
diffusionally stable flame). The negative Markstéémgth case is a subject of ongoing investigatidtguation (16)
admits a variational solution, similar to equat{@}, but with a small white noise added [8, 21]:
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t
&(xt)= min E{J; L(r(s) A(9, é ds-f( (r) r)} (17)
wherer solves forr < s< t the stochastic differential equation

{dr(s):\((r(s),édshl2§,o€0"(’)S (18)

r(t)=x

and Y varies in the class of smooth, time dependenttfoms, /7(s) = Y( (9, Q W represents the one dimensional

Wiener process an@E denotes the expectation with respect to the Wiemeasure. If we call, the minimalY in
equation (17) (which exists and is unique [21]) andhe solution of the corresponding stochastic défféial equation
(18) then it is possible to obtain a formula analegyto equation (8) [21]

/7/(S)=\4(x5):%F(xs§; (19)

Despite being presented here for the one dimenis@as®, we remark that the stochastic variatioeptesentation can
be extended to the three dimensional viscous Gteuyeas described in Ref. [20]. Based on formdl@)( it is also
possible to extend the Aubry-Mather theory preskinieSection 2.2 [22]. From a physical point ofwjehe effect of
the viscous term can be interpreted as a diffugiah“blurs” the otherwise “sharp” trajectory ofetlglobal minimizer. It

seems intuitive to expect that the strength of éfiisct depends on the behaviord@#/dx? along the global minimizers

trajectories (i.e. of the “curvature” at the leaglipoints). If the Aubry-Mather set for the invisgdoblem consists of
finite number of hyperbolic trajectories in eachipe, then it can be shown that this intuitive pbgé picture is indeed

correct. Let us define the large-time average vali@?s/ox* following thei-th global minimizer for the inviscid
problem as

}%{(yi*(s), s) ds to +oo (20)

and assume that, among all the global minimizérsret exist only oneC, =min, G per period. Then, it can be
demonstrated that [4, 8]

L jim % -

- 21
S0 -0 of ( )

To illustrate, we consider the effect of the vissderm for the model problem described in Sectidor3hear flow (13)
and (14) in theA-V parameter space where the solution possesses @eutigperbolic global minimizer per period

(see Figure 10). Using the analytical solutionduation (31), the value dE, for both profiles are given by:

A
_Z_Hi for shearflow (13’
3 L (2 _vs2)\¥4
Y ou,, | (semVY)
C =-——" —az(x_o)_ (22)
(£,-v?) X 15527 s..VA

> T for shearflow (14
5 L (S_,O_V )

This expression clearly shows the inhibiting effét a positive Markstein length has on the fidisplacement speed.
This result is well known from measurements of tleht flame speeds of lean, heavy fuels [15, 34].
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The effect of the curvature term is stronger fag #hear flow (14), since the absolute maximaxat0 is
sharper. To analyze equation (21)-(22), equatiod) (@ias solved numerically to extract the value ®f. The

computational scheme discretized first order spdgavatives in equation (16) using a fifth-ord®#fENO scheme [26]
and a central sixth-order scheme for the secondraspatial derivative. A Total Variation Diminislgn(TVD), third
order Runge—Kutta scheme [23] was used for timegiattion and the Local Lax-Friedrich (LLF) schemaswsed for

improved stability [26]. The comparison between thenerical computation of; and the linear relation (21) for

different values ofA andV is shown in Figure 11. These results show thatgou (21)-(22) exactly captures the
dependence 0§, upon/ for //L <1, especially when the value ad*¢/dx? at the leading point is not too high (such
as for shear flow (13) in Figure 11a). For highuesl of 9°£/dx?, the dependence af. on ¢ becomes nonlinear, and

the linearized approximation loses accuracy.

2

18 & - «~Shear Flow (13)
s Shear Flow (13) 7\ 0
1.6 N S «7 \\
< N < \.
V;’?] 14 D \\\ S 4 vﬁ "
. N 3
%k \ \ %&
N X T~
12 N 0 Shear Flow (14) \

\
\ W‘\ . -
L * v = V/sy g=0.5
Asspo=1 Shear Flow (14) V/sy = 0.5 N Alsp =10 SLo= 02

0 0.02 004 006 008 0.1 0 0.02 004 006 008 0.1
UL UL
@ (b)

Figure 11. Front displacement speeds; dependence on Markstein length¢ for A/s =1 (a), A/s, =10 (b) and different V

values for the model problem of Section 3. Solidries refer to numerical solutions, dashed lines tdi¢ linear approximation of
equation (21).

5. Concluding Remarks

In order to assess phenomenological leading pamgisments, this paper has analyzed exact solufboriame
propagation in periodic shear flows. These reswdtglate some basic ideas from Zeldovich’s leagingnts arguments,
but also modify them appreciably, at least for tthderministic problem. In particular, these resualearly show that
under certain conditions, the front displacememtesiis controlled by velocity field characteristatsdiscrete points on
the flame. However, these points do not generadlyoh the farthest forward point of the front (thiestantaneous
leading point”). Second, for other conditions, trant displacement speed is not controlled byriscpoints, but rather
by the entire spatial distribution of the velocfigld. For these conditions, the “instantaneowslieg points” do not
have any dynamical significance in controlling tihent displacement speed. Finally, these resu#arly show the
effects of flame’s stretch sensitivity in modifyitige front displacement speed can be successhublygreted in term of
leading point concepts.

A natural question at this point is if the ideaplag in the previous sections apply to the G-eigmatl) in two
and three dimensional flows where the flame pasitionot a single valued function xfUnfortunately, the existence of
global minimizers is not guaranteed in general, tiedideas described in the previous sections teéé applied with
care. To illustrate why this is the case, let astsecalling that for an autonomous Hamilton-Jaegfuation

%m(x,w):o XxOQOR" (23)
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(with the Hamiltonian functionH convex in theO¢ variable), a sufficient condition for the existenaf the Aubry-
Mather set is for the Hamiltonian to satisfy thecatled coercivity condition[24]:

im H (x,0¢)=+ (24)

For the G-equation, the Hamiltoniat (x, 0G) = 5 |0 G- U Y C, does not satisfy Eq. (24) for a mean-zero vejocit
field u(x) with amplitude larger than then the laminar flaspeeds, . From a physical point of view the lack of

coercivity means that the propagation of the fldroat is dominated by stirring and convection, eatthan actual flame
propagation, and it is possible that certain flowfites can “block” characteristic curves and pravihem from existing

on time intervals(—oo,+oo) (i.e. prevent it from being a global minimizer) [5For flow fields that do not admit an

Aubry-Mather set, some success in studying frogpldcement speeds trends has been made consitledabaction
minimizing trajectories” [42, 53], which seem todbean analogy to the global minimizers but in aalaetting. Also,
locally minimizing trajectories have been used &mndnstrate mathematically the existence of thet fdisplacement
speed in periodic and random incompressible flawsriy dimension [12]. However, at this point is ot#ar if the
dynamics of these local trajectories is analogausht dynamics of global minimizers as presentedhis paper.
Extension of the present model to more complex ftowfigurations will be the subject of future warks

Appendix A

In this Appendix we describe the analytical solatiof model problem of Section 3 [18]. This solutin
obtained through an averaging procedure (homogemigdor the G-equation applicable when the velptiow field in
which the flame is moving is composed by spatialtyl temporally separated scales. Let us assumaitlimtequation

(1) is an incompressible velocity field with twopseated spatial scaleg =V(X)+V(¥e), where £ is a small

parameter representing the ratio of the two lersgptles of the velocity field: in this context it matural to seek a
solution G in the form of an asymptotic multiscale expansion

G=G(xt)+eC(%¥e, ) +... (25)
Substituting Eqg. (25) into Eq.(1) at the leadindearwe obtain

0G°
ot

+(V(x)+v(y)do, @ +0,6)- 5|0, G+0, d=0 (26)

where ¥ = X/ . The objective of the homogenization procedure idescribe the motion of the larger sc&l® in terms

of the smaller scal&', namely, to obtain the effective propagation spe,e(d5, “x) of the large scale for a given position

% and direction of propagatioR = —DXGO:

=s ( P, 3<) (27)
where

s (P¥N=-(MR+ YY) -P0O, &+ g- RO, & (28)

!Note that for the one-dimensional problem considéreSection 3, the global minimizer does existretieough the
problem does not satisfy the coercivity condition¥ = 5 .
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Equation (28) is a nonlinear eigenvalue problerferred to as the flame “cell problem” [51]. If therger scale is a
constanﬁ(i) = consi (i.e. its period is infinite) the ansatz (25) isexact solution, and the discussion on the mulkisc
expansion has only a motivational purpose. In ouwsdeh problem, we considered a two scale flow with

V(X)=(V,0) = cons and V(%/&)=(0, f(X), where f(x) is periodic of periodL and zero mean; our choice of
G=¢(xt)-y in equation (2) is equivalent to imposin@” =-y and G'=¢(x ) with the mean direction of

propagation now beind® = (0,1). With these choices equation (28) reduces to:

s =541+ ¢ - Vg f( § (29)

The eigenfunctiory of this nonlinear eigenvalue problem has to satigberiodicity condition

~[gdx=g=0 (30)

This average slopeg can also be interpreted as a conserved quantityhi® conservation equation (3), since its

dynamics does not modifyg. For Hamiltonians of the mechanical tybe(x.t, p)= */2+ f(x 1, this quantity

represents an average momentum of the systemHEd@htions (29)-(30) can be solved using the progedresented in
Table 1. This is a simplified version of the progeslin Ref. [18] which include a general dependestenean direction

of propagationP = (cosd,sirf | and the constant large scale velodityx) = V(cos@ ,sin?) = cons.

Vz+ s,/ Z+( V-
Define s, =/ - V¥ +max( f( %) and the functiorF *(z) = sz f( Lé) :
1. If V>g thens; solves the nonlinear algebraic equation
L - —
fo F™(s; - f(x)dx=0
2. IfV<g
e (Lo ..
a. if fo F 1(3r - f(x)) dx<O0 thens, = §;
b. elses solves the same nonlinear algebraic equation ease 1.

3. If V=9 the solution yields a point whemg=+c (i.e. a point where the flame is parallel

to they-axis) and is not well described by equation (2)e Bolution of this case can be
obtained as a limit from above of case 1 or frohowenf case 2

Table 1. Procedure used to calculate the front disgacement speeds; , for the model problem considered in Section 3.

Onces; has been calculated, the flame shape can be addwolving equation (29) fay :

o Vs 1) s V- g+(5 ()

_ v (D)

Equation (31) has two branches. For case 1 and2tage Table 1 the only physical solution ds, since it is the only
one that satisfies the periodicity condition (38)r case 2a in Table 1, the physical solutprjumps between the two

branches. These jumps are at points whb(ex) reaches an absolute maximum (“transition poirdsit) at points where

g is discontinuous (“shocks”). The only rules thagulate these jumps are the entropy condi@;(ng)— g( )Q) >0
across a shock &t and the respect of the periodicity condition (30).

14



Appendix B

In this Appendix we show how the large time fropeed s, for a flame propagating in a unidirectional
periodic velocity fieldu, (x) = f(x), u, =0 can be obtained through a simple geometric reagpas mentioned in the
Introduction. For the flow field under consideratiequation (29) becomes:

s, =541+ g+ f( % (32)

When the flame front has reached a steady stapmi@ts wheref (x) has an absolute maximum the flame slapes
zero, by geometric necessity. Then, equation (82)be readily solved, obtaining

s. =g +max( f( %) (33)

This result is independent of the particular dstafl the shear flow profilef (x) and is a particular solution of case 2a
in Table 1.
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