
Paper # 070LT-0278 Topic: Laminar & Turbulent Flames

8th US National Combustion Meeting
Organized by the Western States Section of the Combustion Institute

and hosted by the University of Utah
May 19-22, 2013.

An adjoint approach to understanding perturbation of flames

Kalen Braman1 Todd Oliver2 Venkat Raman1

1Department of Aerospace Engineering and Engineering Mechanics,
The University of Texas at Austin, Austin, TX 78712, USA
2Institute for Computational Engineering and Sciences,

The University of Texas at Austin, Austin, TX 78712, USA

Adjoints have been applied to the calculation of the sensitivity of a laminar hydrogen flame to changes
in the upstream field variables. These changes are applied through the use of source term additions to the
governing equations. Sensitivity to the variation of the source terms typically would require the repeated
solution of the laminar flame. With the use of adjoints, only an additional adjoint solution is required
to compute the sensitivity of the desired quantitiy of interest to changes in those variables. Here, the
effects of changes to the content of several species in the flow on the NOx content of a downstream
region are computed. Results show that the NOx levels are sensitive to H2 and O2 in the region flanking
the fuel jet near the inlet and in the flame itself. Additionally, the NOx levels are sensitive to radicals in
the flow flanking the region of high-temperature combustion products.

1 Introduction

Design and control of reliable combustion devices requires planning for every possible hazard.
For example, in the case of gas turbine combustors, blow out of the flame may happen in extreme
operating conditions. When such a difficulty occurs, an ignition source must be placed back into
the flowfield of the combustor in order to reinitiate the flame. While this reignition may occur given
a powerful ignition source in many locations within the combustor, it can occur faster and more
efficiently in certain regions of the combustor. Those regions can be determined by knowledge of
the sensitivity of reignition to the placement of an ignition source. This concept can be abstracted to
a general idea. One can define key quantities, such as temperature profile at exit or the average NOx
concetration as the primary targets of the simulation, and call them quantities of interest (QoIs).
In this context, knowledge of the sensitivity of QoIs to changes of the combustor’s conditions can
lead to improved design and control.

Generally, the sensitivity of QoIs to parameters can be computed using one of two methods: for-
ward sensitivity equations or adjoint equations. The relative advantage of the method depends on
the nature of the simulations. Any combustion simulation will involve a host of model parame-
ters (e.g., Arrhenius rate coefficients). Similarly, depending on the flow configuration, a number
of QoIs may be necessary. The forward sensitivity method of solution is best suited to situations
which involve small numbers of parameters and multiple QoIs since each parameter adds an addi-
tional partial differential equation to be solved. An alternative method for sensitivity determination
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uses the adjoint method. This method is well suited to applications that involve few QoIs and many
parameters since each QoI, not each parameter, adds additional equations to be solved.

Adjoint methods have been used in several aerospace-related applications including aerodynamic
shape optimization, flow control, and acoustic noise reduction. Optimization of airfoil and aerody-
namic shapes has been the focus of many studies [1–6]. These applications used adjoint methods
to optimize shape parameters and improve certain aspects of performance, such as drag. Airfoil
optimization has been carried out both using continuous adjoint derivations, in which the adjoint
equations are derived and then discretized, and using discrete adjoint equations, in which the ad-
joint equations are derived from the already-discretized governing equations [7]. In the realm of
flow control, adjoints have been used to reduce drag over bodies and in channels [8, 9]. Further
applications of adjoints have aimed at the reduction of acoustic production [10, 11] in unsteady Di-
rect Numerical Simulation (DNS) and Large Eddy Simulation (LES). Adjoint methods have also
been used in the realm of chemical kinetics as it relates to atmospheric pollution. Sensitivity of
output variables to kinetics parameters has been derived and implemented for the adjoint method
alongside the direct decoupled method [12], and subsequently been applied to air pollution models
[13, 14].

Here, the continuous adjoint equations are derived for steady incompressible variable density lam-
inar combustion. The adjoints are then used to calculate the sensitivity of a laminar flame to
changes in the upstream field variables. Any number of changes may affect the chosen QoIs in the
combustor. Here, we consider the situation where small changes to local scalar values could be
introduced. In a practical configuration, this could be the result of a spark ignition source placed in
the flow. Typically, the flow would need to be solved repetitively with the perturbed values in order
to determine the effects of local scalar changes on QoIs in the flame. With the use of adjoints, no
additional flow solve is necessary for each scalar value perturbation. Only an additional solution of
the adjoint equations for each specified QoI is required in order to give the sensitivity of that QoI
to the perturbations. In this way the effect of changes to the state of the flow within the combustor
have been determined for NOx concentrations.

2 Computational Methodology

Computation of the sensitivity of the QoIs to perturbations of upstream properties is desired. The
determination of the sensitivities requires the steady state solution of the primal problem, which
is the laminar reacting flow, and the subsequent solution of the dual problem, which is the set of
adjoint equations. From these solutions the sensitivity of important quantities in the flame can
be calculated. The following three sections detail the primal problem, the dual problem, and the
calculation of the sensitivity of a QoI to perturbations.

2.1 Primal Problem

The primal problem consists of steady-state laminar incompressible variable density reacting flow.
Reactions are handled with a multistep kinetics approach for laminar reactions. As a result, a
reacting scalar for each chemical species will be carried in the flow.
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The primal problem is governed by the incompressible variable density Navier-Stokes (NS), reac-
tive scalar, and enthalpy equations which can be written in the following form:

∂ρ

∂t
+
∂ρui
∂xi

= 0

∂ρuj
∂t

+
∂ρuiuj
∂xi

+
∂p

∂xi
δij −

∂

∂xi

(
µ
∂uj
∂xi

)
= 0

∂ρYk
∂t

+
∂ρuiYk
∂xi

− ∂

∂xi

(
ρDk

∂Yk
∂xi

)
= ρSk

∂ρhs
∂t

+
∂ρuihs
∂xi

− ∂

∂xi

(
ρα
∂hs
∂xi

)
= ρShs

where ui is the velocity, p is the pressure, Yk is the mass fraction for species k, Dk is the diffusivity
for species k, Sk is the source term for species k, hs is the sensible enthalpy, α is the thermal
diffusivity, and Shs is the chemical source term for enthalpy. Since a steady state solution is
desired, the primal problem is evolved in time until the flame solution reaches steady state.

When solving the above equations in practical applications, often the Poisson equation for pressure
is solved in place of continuity. The Poisson equation can be written in the following manner:

∂2p

∂xi∂xi
+ ρ

∂

∂xj

[
∂uiuj
∂xi

]
= 0.

In this application to a two-dimensional flame, boundary conditions must be set on the four bound-
aries of the rectangular domain. The four boundaries are an inflow boundary, an outflow boundary,
and two open lateral boundaries. The inflow boundary includes a core fuel flow as well as a co-
flow. The boundary conditions for that inflow are set as a specified value (Dirichlet condition) for
u, v, and Yk, while the boundary condition for pressure is set as a zero-gradient condition. The
lateral boundaries involve two types of boundary condition. Zero-gradient boundary conditions
are set for u, v, and Yk, and a Dirichlet condition is used for pressure. The outflow boundary uses
a non-reflective open condition. This outflow involves zero-gradient boundary conditions for all
variables save pressure, which is set as a Dirichlet condition.

2.2 Dual Problem

The dual problem involves the solution of the adjoint equtions for a specific QoI. Starting with the
defined QoI, the adjoint equations can be derived through the use of Lagrange multipliers. This
derivation is detailed in Appendix A. The result of this derivation is the following set of adjoint
equations corresponding to incompressible steady state reacting flow:

2u
∂ϕu
∂x

+ v
∂ϕv
∂x

+ Yk
∂ϕYk
∂x

+ hs
∂ϕhs
∂x

+ v
∂ϕu
∂y

+
∂

∂xj

(
ν
∂ϕu
∂xj

)
= − ∂Q

∂ρu

u
∂ϕv
∂x

+ u
ϕu
∂y

+ 2v
∂ϕv
∂y

+ Yk
∂ϕYk
∂y

+ hs
∂ϕhs
∂y

+
∂

∂xj

(
ν
∂ϕv
∂xj

)
= − ∂Q

∂ρv
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In the above adjoint equations, ϕ refers to the adjoint variables with the subscript denoting the
corresponding primal variable and Q refers to the chosen QoI.

2.3 Sensitivity to perturbations

A QoI Q can be selected which is impacted through the governing equations by flowfield proper-
ties. Perturbations to the properties can be effected by adding an additional term to the governing
equations which acts as a source. For example if the QoI could be affected by OH radicals in the
flow, then a source for OH can be introduced upstream of the flame. The added source term can be
treated as a parameter in the governing equations. Considering the species mass fraction equation
for species k, an additional source term can be introduced which will be labeled φk, as written in
the following equation:

∂ρuiYk
∂xi

− ∂

∂xj

[
ρDk

∂Yk
∂xj

]
= ρSk + φk. (1)

The adjoint solution permits calculation of sensitivities of a QoI to changes in the governing equa-
tions such as addition of the above source term. In general the sensitivity of a QoI Q to a source
parameter φ is written as

dQ(U(φ))

dφ
=
∂Q

∂φ
+
∂Q

∂U

∂U

∂φ
.

In the cases where Q has no explicit dependence on φ,
∂Q

∂φ
= 0, and therefore

dQ(U(φ))

dφ
=
∂Q

∂U

∂U

∂φ
. (2)

The full set of governing equations can be written in discrete residual form as the following

R(U ,φ) =
∂Fi(U)

∂xi
− ∂Gi(U)

∂xi
− ρS(U)− φ = 0, (3)

for which U is the vector of independent variables, Fi is the flux term vector in the ith direc-
tion, G is the viscous term vector in the ith direction, S is the source term vector, and φ is the
parameterized source term vector, each term with values at each discrete location.
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Next, considering the discrete version of the adjoint derivation as follows,

∂Q

∂U
δU −ϕT ∂R

∂U
δU = 0,

the adjoint variable can be written in the form

ϕT =
∂Q

∂U

(
∂R

∂U

)−1

.

With the governing equations in the form of (3), the following relation is derived,

∂R

∂U

∂U

∂φ
+
∂R

∂φ
= 0,

which then leads to
∂U

∂φ
= −

(
∂R

∂U

)−1
∂R

∂φ
.

Combining the above relations with (2) leads to the following expression for the sensitivity

dQ

dφ
= −ϕT ∂R

∂φ
, (4)

where the adjoint variable vector ϕ is substituted from the adjoint PDE solution.

The solution to the governing equations (3) can proceed with the parameterized source term set to
zero; however, the sensitivity to that source term nonetheless can be calculated.

Considering only a single source term φk, (4) reduces to

dQ

dφk
= −ϕT ∂R

∂φk
,

where
∂R

∂φk
is non-zero only for the Yk equation. Thus, the sensitivity equation simplifies to

dQ

dφk
=
∑
i∗

ϕk, (5)

where i∗ refers to those discrete locations in the domain to which the φk source term has been
applied.

3 Results

A laminar hydrogen diffusion flame simulation and its corresponding adjoint solution have been
developed to demonstrate the capabilities of the adjoint method. The flame includes a jet of pure
hydrogen with a coflow of air. Figure 1 shows a schematic of the domain of the simulation with the
inlet sections labeled. Table 1 lists the inlet flow properties. For this application a detailed kinetics
model for hydrogen with NOx formation [15] has been used. This model includes 32 species and
172 reactions. The next two sections will include first a brief description of the flame simulation
results and second a description of the sensitivity results calculated using the adjoint solution.
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Figure 1: Simulation domain

Table 1: Inlet flow properties
Property \Stream Fuel stream Coflow stream
Temperature (K) 293.0 293.0
YH2 1.0 0.0
YO2 0.0 0.232
YN2 0.0 0.768
U (m/s) 0.05 0.25

3.1 Laminar flame simulation results

Figure 2 displays the temperature field from the solution of the primal problem. The peak flame
temperature reaches 2214K along the centerline at 0.099m downstream of the inlet. The NOx
mass fraction fields are plotted in Fig. 3. Nitric oxide peaks in the region just downstream of peak
temperature. Although its peak value decreases as the flow cools downstream, NO remains in the
flow. Nitrogen dioxide peaks in the downstream area of the flow at the edge of the hot combustion
products. Here, the NO formed in the higher temperature regions combines with the cool coflow
and reacts to form NO2.

Figure 2: Temperature (K)
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(a) YNO

(b) YNO2

(c) YNOx

Figure 3: NOx fields
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3.2 Laminar flame sensitivity results

Although control of ignition can be a goal of adjoint-based sensitivity methods, control of pollutant
emissions from combustion devices also is desired. The study of the sensitivity of pollutants to the
state of the flow inside the combustor is a step towards that control. Combustion pollution includes
such chemicals as unburned hydrocarbons, carbon monoxide, carbon dioxide, and NOx. NOx for
instance contributes to the formation of acid rain and smog. Determination and minimization of
the level of pollutant output is a driving factor in the development of simulation techniques used in
the combustor design cycle. Here the sensitivity of NOx levels in a laminar flame are considered.

For this reason, NOx concentration is used as the QoI for the analyses below. The QoI thus can be
written in the following manner:

Q =

∫
ΩQ

ρ(YNO + YNO2), (6)

where ΩQ refers to the region over which the NOx has been calculated. Figure 1 shows ΩQ, the
rectangular region downstream of the flame in which the NOx has been calculated. The region
occupies the full width of the domain and extends from 0.58m to 0.6m.

From (5) values for the sensitivity of NOx concentrations can be calculated for source additions
to different variables. The source additions can be applied anywhere within the domain. Since the
sensitivity value is a summation of the adjoint solution over the source-applied region, plots of the
adjoint variables themselves depict where the source additions most affect the QoI.

Figure 4 shows the adjoint variable solutions for YOH, YO, and YN. The adjoint solutions for OH
and O indicate regions near the inlet 0.04m to either side of the core fuel jet where the NOx con-
centration is sensitive for which increases to YOH and YO decrease the QoI. These regions continue
downstream with a lower magnitude flanking either side of the high temperature combustion prod-
ucts. Additionally for O, two small rgions of sensitivity exist immediately to either side of the fuel
jet in which increases to YO will increase NOx. For YN a region of high sensitivity exists near the
inlet for the majority of the span of the domain. Continuing downstream, a lower sensitivity region
encompasses the region of higher temperature combustion products.

The adjoint variable solutions for YH2 , YO2 , and YN2 are displayed in Fig. 5. The regions near
the inlet of the domain and just outside of the fuel jet show the greatest sensitivity. Additionally,
the region of the flame itself shows sensitivity to H2, O2, and N2. For H2 increases to its source
decrease the QoI, while for O2 and N2 increases increase the QoI.

4 Conclusions

The adjoint equations have been derived for steady state laminar variable density reacting flow.
A laminar hydrogen flame simulation has been developed to demonstrate the capabilities of the
adjoint method in determining sensitivity of the NOx production of the flame to perturbations of
the state variables via source terms. The adjoint solutions show that the NOx levels are sensitive to
H2 and O2 in the region of the flame itself and near the inlet where they would be transported into
the flame. Additionally, the NOx levels are sensitive to addition of radicals in the region bordering
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(a) ϕOH

(b) ϕO

(c) ϕN

Figure 4: Adjoint variable fields for OH, O, and N

(a) ϕH2
(b) ϕO2

(c) ϕN2

Figure 5: Adjoint variable fields for H2, O2, and N2
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the hot combustion products, and again at the inlet where they would be transported into those
regions.
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A Appendix

The adjoint equations are derived starting from the steady-state governing equations for the primal
problem. To facilitate the derivation, the NS, reactive scalar, and enthalpy equations can be written
compactly in the following form:

∂Fi
∂xi
− ∂Gi

∂xi
= S,

for which
U = [ρu, ρv, p, ρYk, ρhs]

T

Fi = [ρuiu+ pδi1, ρuiv + pδi2, 0, ρuiYk, ρuihs]
T

Gi =

[
µ
∂u

∂xi
, µ

∂v

∂xi
,− ∂p

∂xi
, ρDk

∂Yk
∂xi

, ρα
∂hs
∂xi

]T
S =

[
0, 0, ρ

∂

∂xj

[
∂ūiūj
∂xi

]
, ρSk, ρShs

]T
,

where U is the state vector, Fi is the inviscid flux vector in the ith direction, Gi is the viscous
flux vector in the ith direction, and S is the source term vector. For later substitution in the dual

problem, Gi can be written as Kij
∂U

∂xj
.

A.1 Adjoint derivation

The dual problem involves a specific quantity of interest (QoI). In this derivation, the QoI J will
be the domain-wide integral of a scalar function. Here, the scalar function J will depend only upon
the state variable for simplicity:

J (U) ≡
∫

Ω

J(U).

The dual problem requires the Lagrangian L which is defined as

L(U,ϕ) ≡ J (U)−
∫

Ω

ϕT
(
∂Fi
∂xi
− ∂Gi

∂xi
− S

)
,

where ϕ is the Lagrange multiplier as well as the adjoint state.

The adjoint equations are derived under perturbation of the Lagrangian with perturbation V . With
L stationary to variations in V , the adjoint equations can be developed from the following:

L′[U ](V, ϕ) = 0, (7)

where L′[U ] refers to the Frechet derivative of L taken at U . L can be broken down into different
terms corresponding to the compact form of the RANS equations as follows:

L(U,ϕ) ≡ LQoI(U,ϕ)−
[
Linv(U,ϕ)− Lvisc(U,ϕ)− Lsrc(U,ϕ)

]
.

Applying the same term break down to (7), L′ is written

L′QoI [U ](V, ϕ) = L′inv[U ](V, ϕ)− L′visc[U ](V, ϕ)− L′src[U ](V, ϕ). (8)
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A.1.1 Inviscid flux

The inviscid flux portion of the Lagrangian equation is given by

Linv(U + V, ϕ) =

∫
Ω

ϕT
∂Fi(U + V )

∂xi

=

∫
Ω

ϕT
∂Fi(U)

∂xi
+

∫
Ω

ϕT
∂F ′i [U ](V )

∂xi
+H.O.T.

= Linv(U,ϕ) +

∫
∂Ω

ϕTF ′i [U ](V )ni −
∫

Ω

∂ϕT

∂xi
F ′i [U ](V ) +H.O.T.,

where F ′i [U ] is the Frechet derivative of the flux in the ith direction taken at U , which is the

Jacobian of Fi evaluated at U . Additionally, since
∂ϕT

∂xi
F ′i [U ](V ) is a scalar, the following relation

applies:
∂ϕ

∂xi

T

F ′i [U ](V ) =

(
∂ϕ

∂xi

T

F ′i [U ](V )

)T
= V TF ′i [U ]T

∂ϕ

∂xi
.

Ultimately, the inviscid flux contribution is written as

L′inv[U ](V, ϕ) =

∫
∂Ω

ϕTF ′i [U ](V )ni −
∫

Ω

V TF ′i [U ]T
∂ϕ

∂xi
.

A.1.2 Viscous flux

The viscous portion of the Lagrangian equation is given by

Lvisc(U + V, ϕ) =

∫
Ω

ϕT
∂

∂xi

(
Kij(U + V )

∂(U + V )

∂xj

)
=

∫
Ω

ϕT
∂

∂xi

(
Kij(U)

∂U

∂xj
+K ′ij[U ](V )

∂U

∂xj
+Kij(U)

∂V

∂xj

)
+H.O.T.

= Lvisc(U,ϕ) +

∫
Ω

ϕT
∂

∂xi

(
K ′ij[U ](V )

∂U

∂xj

)
︸ ︷︷ ︸

Term I

+

∫
Ω

ϕT
∂

∂xi

(
Kij(U)

∂V

∂xj

)
︸ ︷︷ ︸

Term II

+H.O.T.

Integrating by parts the first term of the viscous flux gives∫
Ω

ϕT
∂

∂xi

(
K ′ij[U ](V )

∂U

∂xj

)
=∫

∂Ω

ϕTK ′ij[U ](V )
∂U

∂xj
ni −

∫
Ω

∂ϕ

∂xi

T(
K ′ij[U ](V )

∂U

∂xj

)
,
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for which the interior term can be rewritten as∫
Ω

∂ϕ

∂xi

T(
K ′ij[U ](V )

∂U

∂xj

)
=

∫
Ω

V TR,

where R is a vector such that

Rα =

(
K ′ij[Uα]

∂U

∂xj

)T
∂ϕ

∂xi

Integrating by parts the second term of the viscous flux gives∫
Ω

ϕT
∂

∂xi

(
Kij(U)

∂V

∂xj

)
=∫

∂Ω

ϕTKij(U)
∂V

∂xj
ni −

∫
∂Ω

V TKij(U)T
∂ϕ

∂xi
nj +

∫
Ω

V T ∂

∂xj

(
Kij(U)T

∂ϕ

∂xi

)
.

Finally, the viscous term can be written

L′visc[U ](V, ϕ) =

∫
∂Ω

ϕTK ′ij[U ](V )
∂U

∂xj
ni −

∫
Ω

V TR

+

∫
∂Ω

ϕTKij(U)
∂V

∂xj
ni −

∫
∂Ω

V TKij(U)T
∂ϕ

∂xi
nj +

∫
Ω

V T ∂

∂xj

(
Kij(U)T

∂ϕ

∂xi

)
.

A.1.3 Source term

The source term portion of the Lagrangian is given by

Lsrc(U + V, ϕ) =

∫
Ω

ϕTS(U + V )

=

∫
Ω

ϕTS(U) +

∫
Ω

ϕTS ′[U ](V ) +H.O.T.,

leading to the following

L′src[U ](V, ϕ) =

∫
Ω

V TS ′[U ]Tϕ.

A.1.4 QoI term

The QoI portion of the Lagrangian is given by

LQoI(U + V, ϕ) =

∫
Ω

J(U + V )

=

∫
Ω

J(U) + J ′[U ](V ),

which leads to
L′QoI [U ](V, ϕ) =

∫
Ω

V TJ ′[U ]T .
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A.2 Adjoint Equations

To arrive at the adjoint equations, the contributions to L′ can be split into interior and boundary
condition terms, as follows:

L′[U ](V, ϕ) = L′interior[U ](V, ϕ) + L′BC [U ](V, ϕ).

A.2.1 Interior

Selecting perturbations V that lead to both V and
∂V

∂xi
approaching zero in the neighborhood of all

boundaries leads to the following equation:

L′interior[U ](V, ϕ) =

∫
Ω

V TJ ′[U ]T −
∫

Ω

V T

[
− F ′i [U ]T

∂ϕ

∂xi
− ∂

∂xj

(
Kij(U)T

∂ϕ

∂xi

)
+R− S ′[U ]Tϕ

]
This is zero according to (7). Since V in this application may be selected arbitrarily, the above
equation may be reduced to the adjoint equations as follows:

J ′[U ]T = −F ′i [U ]T
∂ϕ

∂xi
− ∂

∂xj

(
Kij(U)T

∂ϕ

∂xi

)
+R− S ′[U ]Tϕ.

This equation can also be written as

F ′i [U ]T
∂ϕ

∂xi
+

∂

∂xj

(
Kij(U)T

∂ϕ

∂xi

)
−R = −S ′[U ]Tϕ− J ′[U ]T .

Substituting Fi, Kij , and S gives the final form of the adjoint equations as follows:

2u
∂ϕu
∂x

+ v
∂ϕv
∂x

+ Yk
∂ϕYk
∂x

+ hs
∂ϕhs
∂x

+ v
∂ϕu
∂y

+
∂

∂xj

(
ν
∂ϕu
∂xj

)
= − ∂J

∂ρu

u
∂ϕv
∂x

+ u
ϕu
∂y

+ 2v
∂ϕv
∂y

+ Yk
∂ϕYk
∂y

+ hs
∂ϕhs
∂y

+
∂

∂xj

(
ν
∂ϕv
∂xj

)
= − ∂J

∂ρv

∂ϕu
∂x

+
∂ϕv
∂y

+
∂

∂xj

(
− ∂ϕp
∂xj

)
= −∂J

∂p

u
∂ϕYk
∂x

+ v
∂ϕYk
∂y

+
∂

∂xj

(
Dk

∂ϕY k
∂xj

)
= −

(
∂ρSl
∂ρYk

ϕY l +
∂ρShs
∂ρYk

ϕhs

)
− ∂J

∂ρYk

u
∂ϕhs
∂x

+ v
∂ϕhs
∂y

+
∂

∂xj

(
α
∂ϕhs
∂xj

)
− ∂ν

∂ρhs

(
∂ρu

∂xi

∂ϕu
∂xi

+
∂ρv

∂xi

∂ϕv
∂xi

)
+
∂Dk

∂ρhs

∂ρYk
∂xi

∂ϕY k
∂xi

+
∂α

∂ρhs

∂ρhs
∂xi

∂ϕhs
∂xi

= −
(
∂ρSk
∂ρhs

ϕY k +
∂ρShs
∂ρhs

ϕhs

)
− ∂J

∂ρhs
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A.2.2 Boundary Conditions

L′BC [U ](V, ϕ) =

∫
∂Ω

(
ϕT
[
F ′i [U ](V )−K ′ij[U ](V )

∂U

∂xj
−Kij(U)

∂V

∂xj

]
ni + V TKij(U)T

∂ϕ

∂xi
nj + V TJ ′∂Ω[U ]T

)
= 0

(9)

Combining the boundary conditions at the inflow leads to the following equation for the boundary
conditions for the adjoint variables:(

ϕuVp − ϕuν
∂Vu
∂x
− ϕvν

∂Vv
∂x
− ϕYkDk

∂VYk
∂x
− ϕhsα

∂Vhs
∂x
− Vp

∂ϕp
∂x

)
nx = 0

Considering that any Vp and any ∂Vu
∂x

, ∂Vv
∂x

, and ∂VYk
∂x

are admissible, the above boundary condition
equation leads to the following boundary conditions for the adjoint variables:

ϕu = 0,

ϕv = 0,

∂ϕp
∂x

= 0, and

ϕYk = 0.

ϕhs = 0.

Combining the boundary conditions at the lateral boundaries leads to the following equation:

(ϕuv)Vu + (ϕuu+ ϕv2v + ϕYkYk + ϕhshs)Vv + (ϕYkv)VYk

+(ϕhsv + ϕu
∂ν

∂ρhs

∂u

∂y
+ ϕv

∂ν

∂ρhs

∂v

∂y
+ ϕY k

∂Dk

∂ρhs

∂Yk
∂y

+ ϕhs
∂α

∂ρhs

∂hs
∂y

)Vhs + ϕp
∂Vp
∂y

ny

+

(
Vuν

∂ϕu
∂y

+ Vvν
∂ϕv
∂y

+ VYkDk
∂ϕYk
∂y

+ Vhsα
∂ϕhs
∂y

)
= 0.

Considering that any Vu, Vv, and VYk and any ∂Vp
∂y

are admissible, the above boundary condition
equation leads to the following boundary conditions for the adjoint variables:

vϕu + ν
∂ϕu
∂y

= 0

uϕu + 2vϕv + YkϕYk + hsϕhs + ν
∂ϕv
∂y

= 0

ϕp = 0

vϕYk +Dk
∂ϕYk
∂y

= 0

vϕhs + α
∂ϕhs
∂y

= 0
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Finally, combining the boundary conditions at the outflow boundaries leads to the following equa-
tion:

(ϕu2u+ ϕvv + ϕYkYk + ϕhshs)Vu + (ϕvu)Vv + (ϕYku)VYk

+(ϕhsu+ ϕu
∂ν

∂ρhs

∂u

∂x
+ ϕv

∂ν

∂ρhs

∂v

∂x
+ ϕY k

∂Dk

∂ρhs

∂Yk
∂x

+ ϕhs
∂α

∂ρhs

∂hs
∂x

)Vhs + ϕp
∂Vp
∂x

nx

+

(
Vuν

∂ϕu
∂x

+ Vvν
∂ϕv
∂x

+ VYkDk
∂ϕYk
∂x

+ Vhsα
∂ϕhs
∂x

)
= 0.

Considering that any Vu, Vv, and VYk and any ∂Vp
∂y

are admissible, the above boundary condition
equation leads to the following boundary conditions for the adjoint variables:

2uϕu + vϕv + YkϕYk + hsϕhs + ν
∂ϕu
∂x

= 0

uϕv + ν
∂ϕv
∂x

= 0

ϕp = 0

uϕYk +Dk
∂ϕYk
∂x

= 0

uϕhs + α
∂ϕhs
∂x

= 0.
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