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Principal component analysis has demonstrated promise in its ability to identify low-dimensional chem-
ical manifolds in turbulent reacting systems by providing a basis for the a priori parameterization of such
systems based on a reduced number of parameterizing variables. Previous studies on PCA have only men-
tioned the importance of data pre-processing and scaling on the PCA analysis, without detailed consid-
eration. This paper assesses the influence of data-preprocessing techniques on the size-reduction
process accomplished through PCA. In particular, a methodology is proposed to identify and remove out-
lier observations from the datasets on which PCA is performed. Moreover, the effect of centering and scal-
ing techniques on the PCA manifold is assessed and discussed in detail, to investigate how different
scalings affect the size of the manifold and the accuracy in the reconstruction of the state-space. Finally,
the sensitivity of the chemical manifold to flow characteristics is considered, to investigate its invariance
with respect to the Reynolds number. Several high-fidelity experimental datasets from the TNF workshop
database are considered in the present work to demonstrate the effectiveness of the proposed
methodologies.

� 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
1. Introduction

Recently, principal component analysis (PCA) was introduced as
a method of identifying manifolds in turbulent combustion [1].
PCA has also been used by others to analyze combustion data [2–
4], but for different purposes – see [1] for a discussion. The merits
of PCA in the context of modeling turbulent reacting flows have
been demonstrated for identifying low-dimensional manifolds
underlying the thermo-chemical state [1,5] and toward the devel-
opment of PCA-based combustion models [6,7]. A particularly
noteworthy feature of PCA-based models is the possibility of
obtaining low-dimensional parameterizations satisfying well-
defined error bounds. Previous studies on PCA [1,5] have men-
tioned the importance of pre-processing data prior to applying
PCA, but the effects of pre-processing strategies have not been as-
sessed in detail. In particular, the effect of potential outlier obser-
vations as well as the role of centering and scaling on the principal
component structure has not been addressed. The objective of the
present paper is to review the PCA procedure and highlight the role
of the available pre-processing techniques on the robustness of
PCA and its ability to identify a low-dimensional representation
ion Institute. Published by Elsevier
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of a thermo-chemical manifold. The sensitivity of PCA to modifica-
tions of the database from which the low-dimensional basis is
extracted is also considered, to investigate the universality of the
PCA method.

Section 2 provides a review of PCA as well as a discussion on
outlier removal (2.1), data centering and scaling (2.2), and dimen-
sion reduction (2.3). Section 3 applies PCA to several experimental
datasets from the Sandia non-premixed flame datasets to illustrate
the effect of pre-processing and scaling on the PCA reduction. Fi-
nally, the invariance of the chemical manifold with respect to the
Reynolds number is demonstrated for a set of piloted flames at a
range of Reynolds numbers.
2. Principal component analysis

Principal component analysis (PCA) [8,9] provides a rigorous
mathematical formalism for the identification of the most active
directions in multivariate datasets. PCA identifies correlations
among the variables defining the state space. As a result, a new
coordinate system is identified in the directions of maximal data
variance, which allows less important dimensions to be eliminated
while maintaining the primary structure of the original data. De-
tails of the PCA reduction have been already provided [1]. Here,
the PCA concept will be reviewed briefly whereas the impact of
Inc. All rights reserved.
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Fig. 1. PCA reduction process.
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pre-processing and post-processing on PCA results will be dis-
cussed in detail.

In PCA, n observations of Q variables are assigned to an (n � Q)
matrix X whose rows represent individual observations of all Q
variables x. For the combustion applications considered in this pa-
per, the Q columns in X are taken to be the temperature and spe-
cies mass fractions.1 PCA projects x onto a rotated basis obtained
from the eigenvalue decomposition of the (Q � Q) covariance matrix,

S ¼ 1
n� 1

XT X ¼ ALAT
; ð1Þ

where A and L are the eigenvectors and eigenvalues of S. The ro-
tated basis, defined by the eigenvectors A, may be truncated to re-
tain the most energetic directions (those columns of A associated
with the largest eigenvalues of L), providing the non-square matrix
Aq on which the original data are projected to obtain the principal
components (PC), Zq,

Zq ¼ XAq: ð2Þ

Eq. (2) can be inverted to obtain an approximate reconstruction of
the original (n � Q) dimensional sample:

Xq ¼ ZqAT
q : ð3Þ

Eq. (3) is a linear reconstruction. The intrinsic linearity of the PCA
approach represents a major possible drawback of the technique
to deal with strongly non-linear processes such as combustion.
However, this limitation can be partially overcome using local
PCA [1,10]. Alternatively, non-linear reconstructions can provide
more accurate mappings from Zq to Xq [7]. The PCA reduction pro-
cess is represented schematically in Fig. 1.

Several procedures are required prior to performing the PCA
reduction process (Fig. 1):

1. Outlier removal. Experimental datasets usually contain a few
unusual observations which can strongly affect the data covari-
ance structure and, therefore, the structure of the principal
components. If we refer to a one-dimensional problem, the out-
liers can be classified as those observations which are either
very large or very small with respect to the others. In high
dimensions, there can be outliers that do not appear as outlying
observations when considering each dimension separately and,
therefore, they will not be detected using univariate criteria.
Thus, a multivariate approach must be pursued. PCA itself rep-
resents an ideal tool for the identification and removal of outlier
observations.

2. Centering and scaling. Data are usually centered and scaled before
PCA is carried out. Centering represents all observations as fluc-
tuations, leaving only the relevant variation for analysis. Scaling
is a crucial operation when analyzing the thermochemical state
of a reacting system since temperature and species concentra-
tions have different units and vary over different scales. The
choice of scaling significantly affects the subsequent PCA anal-
ysis: different scalings allow to emphasize correlations among
different groups of state variables, providing an effective tool
for targeting the PCA analysis on the variables which are most
relevant for an investigated application.

Section 2.1 presents a technique to identify outliers, while Sec-
tion 2.2 addresses centering and scaling.
1 Formally, pressure should also be included, but for low mach number flows in
open domains, it is safely neglected.
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2.1. Outlier detection and removal with PCA

The usual procedure for outlier detection in multivariate data
analysis is to measure the distance of each realization i of the Q ob-
served variables, from the data center, using the so called Mahalan-
obis distance:

DM ¼ ðX� XÞT S�1ðX� XÞ; ð4Þ

where X is a matrix containing the average values, �xj ¼ 1
n

Pn
i¼1xij, of

the original variables. The observations associated with large values
of DM are classified as outliers and then discarded. The Mahalanobis
distance can be related to the principal components: it can be shown,
in fact, that the sum of squares of the PC, standardized by the
eigenvalue size, equals the Mahalanobis distance for observation i:

XQ

k¼1

z2
ik

lk
¼ z2

i1

l1
þ z2

i2

l2
þ � � � þ

z2
iQ

lQ
¼ DM;i: ð5Þ

This realization can be exploited for building a robust methodology
based on PCA for outlier identification and removal. As mentioned
previously, the first few principal components have large variances
and explain most of the variation in X. Therefore, those components
are strongly affected by variables with relatively large variances and
covariances. Consequently, the observations that are outliers with
respect to the first few components usually correspond to outliers
on one or more of the original variables. On the other hand, the last
few principal components represent linear functions of the original
variables with minimal variance. These components are sensitive to
the observations that are inconsistent with the covariance structure
of the data but are not outliers with respect to the original individ-
ual variables. Based on the above considerations, the following
detection scheme can be proposed, as suggested by [11]:

1. Multivariate trimming. A fraction c of the data points character-
ized by the largest value of DM are classified as outliers and
removed. X and S are then computed from the remaining obser-
vations. The trimming process can be iterated to ensure that X
and S are resistant to outliers.

2. Principal components classifier. The classifier consists of two

functions, one from the major,
Pq

k¼1
z2

ik
lk

, and one from the minor

principal component,
PQ

k¼Q�rþ1
z2

ik
lk

. The first function can easily

detect observations with large values on some of the original
variables; in addition, the second function helps detect the
observations that do not conform to the covariance structure
of the sample. The number of major components, q, is deter-
mined by retaining the minimum number of PC required to
account for at least 50% of the original data variance, while r
is chosen so that the minor components used for the definition
of the classifiers are those whose variance is less than 0:2 ��l,
where�l is the average value of the eigenvalues of S. This ensures
that the selected minor components account for a very marginal
variance and they only represent linear relations among the
variables. Based on the above definition, an observation Xi is
classified as an outlier if:
(2012), http://dx.doi.org/10.1016/j.combustflame.2012.09.016
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Fig. 2. Outlier identification and removal.
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Please
Xq

k¼1

z2
ik

lk
> c1 or

XQ

k¼Q�rþ1

z2
ik

lk
> c2; ð6Þ
where c1 and c2 are chosen as the 99th quantile of the empirical dis-
tributions of

Pq
k¼1

z2
ik
lk

and
PQ

k¼Q�rþ1
z2

ik
lk

.

The convergence of the algorithm is verified by looking at the
third or fourth order moments of the major principal components.
Since the structure of the data is frequently non-normal, the skew-
ness and kurtosis are monitored from one iteration to the other
and convergence is achieved when the rate of change of such quan-
tities falls below an a priori defined tolerance, (e.g., 10�6) or a max-
imum number of iterations is reached. A schematic representation
of the outlier removal process is shown in Fig. 2.

An example of the outlier detection scheme applied to a dataset
consisting of 62,766 observations of 10 state variables [12] is
shown in Fig. 3a and b. Outliers were artificially introduced in
the experimental data: specifically, 1000 observations have been
Fig. 3. Demonstration of removal of outliers artificially inserted

cite this article in press as: A. Parente, J.C. Sutherland, Combust. Flame
generated from a matrix (1000 � 10) of random numbers between
0 and 1 and scaled using the standard deviation, sj, of the variables
xj. The effect of the outliers on the PCs is very clear from Fig. 3a. The
introduced outliers (black circles) are mostly outliers with respect
to the original variables and they are visible in the plot of the first
two PCs: a small cluster of points, separated from the majority of
observations, appears in the plot of the first and second PC scores.
They are also apparent (although less so) in the plot of the last and
second-last scores as observations scattered around the main cloud
of points. If the outlier detection scheme is applied (Fig. 3b), the
introduced outliers are completely removed; in addition, outliers
present in the original experimental dataset, affecting the first
and last PC scores (univariate and multivariate outliers), are also
detected with the procedure described. A closer look at Fig. 3b also
indicates that the elimination of the outliers results in a slight
modification of the first two PC scores, which are rotated coun-
ter-clockwise and compressed (especially in the z2 direction).

Outliers must be treated with care as they can strongly affect
the covariance matrix, thus leading to the identification of false
PCs.

2.2. Centering and scaling

When the variables are centered and scaled, a reduced variable
can be defined as:

~xj ¼
ðxj � �xjÞ

dj
; ð7Þ

where dj is the scaling parameter for variable xj. PCA, as discussed
above, is applied on ex rather than x. Centering is always applied
into a dataset and the effect on the resulting PCA structure.

(2012), http://dx.doi.org/10.1016/j.combustflame.2012.09.016
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Fig. 4. Scree plot for the determination of the number of principal components. The left frame shows the eigenvalue magnitudes (log scale) while the right frame shows
eigenvalue magnitudes (linear scale) along with the associated variance in the data recovered from retaining the given number of eigenvalues.

Fig. 5. Scatter plot of the first two (left frame) and last two (right frame) principal components from the JHC dataset before (black circles) and after (red circles) outlier
removal. Scaling method: auto scaling. Trimming fraction, c: 0.1%. Outliers are indicated by the blue circle.
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in conjunction with scaling. We consider the following scaling
methods:

1. Auto scaling. Also called unit variance scaling, auto scaling uses
the standard deviation, sj, as the scaling factor for each xj. After
auto scaling, all the elements of X have a standard deviation
equal to one and therefore the data is analyzed on the basis of
correlations instead of covariances.

2. Range scaling. Range scaling adopts the difference between the
minimal and the maximal value, (max (xj) �min (xj)), as scaling
factor. A disadvantage of range scaling with respect to other
scaling methods is that only two values are used to estimate
the range, while for the standard deviation all measurements
are taken into account. This makes range scaling more sensitive
to outliers (see Section 2.1). To increase the robustness of range
scaling, the range could also be determined by using robust
estimators for maximum and minimum sample values, or after
outliers have been removed.

3. Level scaling. The mean values of the variables, �xj, are used as
scaling factors. As with range scaling, level scaling can be
affected by outliers. Therefore, a more robust estimator of the
mean (the median) could be used or the mean could be deter-
mined after outlier removal. Level scaling can be used when
large relative changes are of specific interest. However, in the
case of the thermochemical state of a system, this could exag-
gerate the role of chemical species which appear in very small
concentrations (e.g., radicals).
Please cite this article in press as: A. Parente, J.C. Sutherland, Combust. Flame
4. Max scaling. The variables are normalized by their maximum
values, max (xj), so that they are all bounded between zero
and one. As for the range and level scaling, a robust estimator
of maximum values or a procedure for outliers removal should
be employed.

5. VAST scaling [13]. VAST is an acronym for variable stability scal-
ing and it is an extension of auto scaling. It focuses on variables
which do not show strong variation, using the product between
the standard deviation and the so-called coefficient of variation,
defined as sj=�xj. Such scaling results in a higher importance for
variables with a small relative standard deviation.

6. PARETO scaling [14]. PARETO scales each variable by the square
root of its standard deviation. As a consequence, PARETO gives
the variable under evaluation a variance equal to its standard
deviation instead of a unit variance, as it happens for auto
scaling.

The impact of the different scaling methods will be discussed
for several datasets in Section 3.

2.3. Choosing a subset of principal components

The major objective of PCA is to replace the Q elements of X
with q < Q principal components, while minimizing information
loss. The most obvious criterion for choosing q is to select a cumu-
lative fraction of the total variance that the PCs have to account for.
The required number of PCs, q, is then the smallest value of q for
(2012), http://dx.doi.org/10.1016/j.combustflame.2012.09.016
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Fig. 6. Scatter plot of NO mass fraction as a function of the mixture fraction. Effect of outlier removal for the 3% O2 dilution case. JHC dataset [21].
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Fig. 7. Weights of the original variables on the first (a) and second (b) principal components before (black bars) and after (gray bars) outlier removal for the JHC data. Scaling
method: auto scaling. Trimming fraction, c: 0.1%.
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Fig. 8. Effect of c on the number of points removed during the outlier identification
process for the 3% O2 JHC, flame F and HM1 datasets. Scaling method: auto scaling.

A. Parente, J.C. Sutherland / Combustion and Flame xxx (2012) xxx–xxx 5
which this chosen percentage is exceeded. The cumulative vari-
ance in the data can be obtained as

XQ

k¼1

lk ¼
XQ

j¼1

varðxjÞ: ð8Þ

Then the fraction of the total variance accounted for by retaining q
of the Q eigenvectors can be defined as:

tq ¼
Pq

k¼1lkPQ
k¼1lk

: ð9Þ

Importantly, it can be shown that the definition of tq is equivalent to
the so-called R2 value,

R2 ¼ 1�
Pn

i¼1ðxq;ij � xijÞ2Pn
i¼1ðxij � �xjÞ2

; ð10Þ

where xq,ij is the reconstructed ith observation of xj. Following the
derivation of tq, an appropriate measure of lack-of-fit of the rank
q linear approximation of X can be related to the size of the dis-
carded eigenvalues, i.e.

�j ¼
XQ

k¼qþ1

lk ¼
Xn

i¼1

XQ

j¼1

ðxq;ij � xijÞ2: ð11Þ

For a given number (q) of retained components, it is also possible to
determine the variance accounted for each variable by the retained
eigenvectors as:
Please cite this article in press as: A. Parente, J.C. Sutherland, Combust. Flame
tq;j ¼
Xq

k¼1

ajk

ffiffiffiffi
lk

p
sj

 !2

; ð12Þ

where ajk is the weight of the jth variable on the kth eigenvector of
S.

A less rigorous method to identify the number of retained PCs
uses a scree plot, as shown in Fig. 4 for the jet in hot co-flow dataset,
presented in Section 3. This is a simple plot of the eigenvalue mag-
nitudes sorted in descending order against their indexes, and pro-
vides a graphical interpretation of the information encoded in each
dimension. As previously observed [1,15], there is an exponential
decay in the information encoded in each succeeding dimension.
(2012), http://dx.doi.org/10.1016/j.combustflame.2012.09.016
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Fig. 9. Effect of the trimming fraction c on the structure of the first PC. Scaling
method: auto scaling.

2 For interpretation of color in Figs. 1–3, 5, 6, 8, 10–12, and 15 the reader is referred
to the web version of this article.
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3. Results

High fidelity experimental data provided under the framework
of the Workshop on Measurement and Computation of Turbulent
Non-premixed Flames (TNF workshop) [16] are analyzed in the
present paper. In particular, the following TNF datasets are
employed:

� Turbulent non-premixed CO/H2/N2 (0.4/0.3/0.3 by vol.) jet flame
[17]. This flame represents an ideal test-case due to its simplic-
ity in terms of turbulence/chemistry interactions.
� Flames C–F, a set of four piloted CH4 jet flames [12], are charac-

terized by an increasing Reynolds number and exhibit increas-
ing non-equilibrium phenomena, including local extinction
and re-ignition.
� The jet in hot co-flow (JHC) burner [18], designed to emulate

MILD conditions. It consists of a central fuel jet (80% CH4 and
20% H2) within an annular co-flow of hot exhaust products from
a secondary burner mounted upstream of the jet exit plane. O2
Please cite this article in press as: A. Parente, J.C. Sutherland, Combust. Flame
in the co-flow is controlled at three different levels, 3, 6 and
9 mol%, while the temperature and exit velocity are kept
constant.
� A bluff-body stabilized flame [19,20]. The experimental data

used in this paper, designated as HM1, refer to an equimolar
mixture of CH4/H2 with a fuel velocity of 118 m/s and coflow
air velocity of 40 m/s.

‘‘Instantaneous’’ (as opposed to ensemble-averaged) measure-
ments were used for all analyses presented here.

It should be emphasized that experimental data are ‘‘incom-
plete’’ in the sense that we do not have simultaneous measure-
ments of all species and temperature, as is possible from
computationally obtained data (from, e.g., DNS). In previous stud-
ies that employed computational data, we employ all species and
temperature in the analysis. However, for the purposes of this pa-
per, this is not an issue, since we are focused on data preprocessing
strategies.

In the following, the effect of data pre-processing on PCA results
will be discussed in detail, pointing out the possible impact of out-
liers and scaling methods on the PC structure.
3.1. Effect of outliers on the PCA structure

Outlier detection and removal is particularly important when
using PCA with experimental data. If outliers are not removed,
the resulting PCA can show significant sensitivity to their exis-
tence, thereby complicating interpretation of the PCA.

Figure 5 shows the effect of the outlier removal process on the
principal component structure for the JHC dataset, scaled using
auto scaling and a trimming fraction c of 0.1%. In contrast to the
example discussed in Section 2.1, the dataset is not augmented
with artificial outliers, but processed to identify the existence of
experimental measurements inconsistent with the primary struc-
ture of the data.

It can be observed that, using the original data without any pre-
processing, the scatter plot of the first two principal component
scores show the existence of a few observations which strongly dif-
fer from the main multi-variate structure of the data. Those can be
classified as univariate outliers (see Section 3.1), as they correspond
primarily to the components associated with the largest eigen-
values. Mathematically, those observations are flagged as outliers
because, as explained in Section 2.1, the PC classifier related to
the first few PCs is larger than the 99th quantile of the actual PC
distribution, indicating that the scores associated with those obser-
vations largely deviate from the main data structure. Multivariate
outliers are also present in the original dataset, as indicated by
the plot of the last two principal components.

To confirm the existence of univariate outliers, NO mass frac-
tion is plotted against the mixture fraction, n, for the original data,
at 3% and 6% O2 mass fraction in the co-flow. Figure 6 shows, for
the 3% O2 case, high concentrations of NO on the oxidizer side
(n = 0), which are not observed for the other dilution cases (e.g.,
6% O2, Fig. 6a) and that determine the extreme score values ob-
served in Fig. 5. Figure 6b points out that some ‘‘feasible’’ observa-
tions are also removed during the outlier detection process (black
circles behind red2 dots). This does not affect the statistical value of
the analysis since only approximately 1500 out of more than 60,000
observations are removed, and only a few hundred of those are in the
feasible NO range.

The eigenvectors (A) of the covariance matrix provide insight
into the effect of outliers on the principal components. Figure 7
(2012), http://dx.doi.org/10.1016/j.combustflame.2012.09.016
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Fig. 10. Effect of the trimming fraction c on the temperature distribution (plotted against the mixture fraction, n) for the JHC and flame F datasets.

3 The eigenvalues obtained using different scaling methods are normalized
between 0 and 1, to allow comparison of different pre-processing techniques.
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shows a comparison between the first two PCs obtained for the JHC
dataset with (gray) and without (black) outlier observations. In
particular, the figures graphically indicate the weight of the origi-
nal variables on the first two components. From Fig. 7, it is clear
that, for the JHC dataset, outlier removal results in the chemical
species NO being eliminated from the first two PCs, while the
remaining weights in A remain largely unaffected. This confirms,
as indicated by Fig. 6, that the outliers identified in Fig. 5 are re-
lated to NO measurements, leading to the overestimation of such
species in the PC structure when the dataset is not pre-processed.

The results shown above indicate the relevance that outlier
observations, may have on the covariance structure of the data,
confirming the need for effective outlier removal tool, as the one
employed here and based on PCA.

3.1.1. Effect of the threshold parameter, c
The trimming fraction c (see Section 2.1) plays a critical role in

the outlier removal process: large values of c may result too many
samples being eliminated, resulting in an unphysical modification
of the PC structure. Figure 8 shows the number of removed points
as a function of c for the HM1, 3% O2 JHC and flame F datasets. Fig-
ure 9 shows the effect of c on the structure of the first PC for the 3%
O2 JHC Fig. 9a, flame F Fig. 9b and HM1 Fig. 9c datasets. The PC
structure is relatively constant for c < 0.05%, but begins to change
noticeably for c > 0.1%. Flame F and the HM1 were included in such
analysis with the JHC dataset as they show specific features which
can help identifying appropriate ranges for c, to avoid over-aggres-
sive observation removal during the outlier identification process.
Indeed, those systems show significant extinction: flame F is close
to global extinction [12] and the HM1 bluff-body stabilized flame is
known to show intermittent local extinction being at 50% blow-of
conditions [19,20] Fig. 9c indicates that c < 0.05% leads, in all cases,
to a PC structure which is unaffected by outlier removal, for all
analyzed datasets.

Figure 10 illustrates the effect of over-aggressive outlier re-
moval (c = 1%) on the temperature distribution for the JHC and
flame F datasets. Over-aggressive outlier removal eliminates obser-
vations corresponding to extinction for the JHC dataset while
removing fully-burning regions for the flame F dataset. A similar
effect (not shown here) is observed for the HM1 bluff-body dataset,
where large c also results in removal of points corresponding to
extinction. Figure 9a indicates that the corresponding PC structure
is significantly altered in both cases when the choice of c is too
large.

Figures 9b and 11 indicate that, for flame F, the outlier removal
process with an appropriate choice for c does not significantly im-
pact the PC structure, although some of the realizations inside the
Please cite this article in press as: A. Parente, J.C. Sutherland, Combust. Flame
main ‘‘data cloud’’ are removed because they exceed the 99th
quantile of the experimental distribution of the first and last eigen-
vectors. As a consequence, the PC determined before and after the
outlier removal procedure show very minor differences among the
weights, as shown by Fig. 9b.

Based on the observations above, we recommend 0.01% <
c < 0.05%, which effectively removes outliers but does not remove
enough physically meaningful datapoints to alter the PC structure.

3.2. Effect of scaling

We now consider the effect of scaling strategies outlined in Sec-
tion 2.2 on the PCA reduction, focusing on the Sandia CO/H2 jet
flame dataset. Figure 12 shows the normalized3 eigenvalue size dis-
tribution obtained by applying the different scaling options. It indi-
cates that the VAST and PARETO scaling methods result in larger
weights for the first few eigenvalues while the other scaling options
are all very similar in their eigenvalue size distribution. This is a con-
sequence of the high importance given by the VAST and PARETO
scaling methods to temperature over the chemical species mass frac-
tions. This effect is accentuated for the PARETO scaling, where the
square root of the standard deviation is used to scale variables: this
enhances the relevance of temperature with respect to the other
variables defining the state-space. Indeed, the application of PARETO
scaling results in temperature being the variable carrying most of the
data variance and is, therefore, equivalent to forcing the first princi-
pal component to align with the temperature. Such behavior is a
consequence of the size-dependency of PCA for non-homogeneous
datasets (where the variables have very different scales) as is charac-
teristic of combustion. Therefore, the choice of such scaling does not
appear very useful for the analysis carried out in the present paper,
as it is equivalent to an a priori choice of the PC. However, PARETO
scaling can be extremely appealing for the definition of reduced-or-
der combustion models, as the choice of temperature within the set
of PC has a dramatic influence on the model’s accuracy [7].

Table 1 shows tq and tq,j (see Eqs. (9) and (12)) obtained by
applying range, max, VAST and level scaling to the CO/H2 dataset.
Results indicate that auto scaling is the only scaling technique that
provides a uniform reconstruction of the state variables (for q = 3),
as evidenced by relatively high values of tq,j for all variables. Range
and max scaling, whose behavior is very similar (as expected), per-
form slightly better than auto scaling for most of the main species
and temperature. However, they cannot properly capture NO
variation, even with q = 3. Similarly, VAST scaling concentrates on
(2012), http://dx.doi.org/10.1016/j.combustflame.2012.09.016
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Fig. 11. Scatter plot of the first and last two principal components from flame F before (black circles) and after (red circles) outlier removal. Scaling method: auto scaling.
Trimming fraction, c: 0.5%.

1 2 3 4 5 6 7 8 9

10−8

10−6

10−4

10−2

100

Component Index

N
or

m
al

iz
ed

 e
ig

en
va

lu
e 

si
ze

STD
RANGE
PARETO
VAST
LEVEL
MAX

Fig. 12. Ordered normalized eigenvalue magnitudes for the CO/H2 jet flame dataset
for various scaling strategies.
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extremely stable variables such as N2, but fails to recover minor
species such as OH properly. This effect is accentuated in PARETO
scaling, which clearly emphasizes main species and temperature.
The higher values of tq given by range, max, VAST and PARETO scal-
ing, compared to auto scaling, are due to the higher variance ex-
plained for the major variables. However, these scaling
approaches do not preserve features related to minor species such
as NO and OH. The variance accounted for OH and NO by auto scal-
ing is up to 16% and 25% higher, respectively, than that explained
by the other scaling methods. On the other hand, level scaling fo-
cuses on variables characterized by large changes (relative to their
mean) and leads to an overestimation of the role of minor species
in the PCA reduction. Therefore, the reconstruction of minor
species such as OH and NO is very accurate, but major species such
Table 1
Total, tq, and individual variance, tq,j, (see Eqs. (9) and (12)) accounted for the CO/H2 jet fla

Auto (std) Range Max

q = 2 q = 3 q = 2 q = 3 q = 2 q = 3

T 0.971 0.973 0.983 0.991 0.979 0.990
YO2 0.986 0.986 0.994 0.994 0.997 0.997
YN2 0.986 0.986 0.981 0.981 0.971 0.971
YH2 0.968 0.969 0.962 0.963 0.957 0.960
YH2 O 0.930 0.936 0.945 0.945 0.944 0.944
YCO 0.994 0.994 0.995 0.997 0.990 0.994
YCO2 0.973 0.977 0.979 0.987 0.977 0.988
YOH 0.738 0.940 0.731 0.991 0.745 0.992
YNO 0.772 0.930 0.728 0.795 0.729 0.802
tq 0.924 0.966 0.946 0.975 0.942 0.975
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as H2O are poorly recovered. On the basis of the described sensitiv-
ity, it becomes clear how scaling can be constructively employed to
target the desired accuracy of different subsets of state variables. In
particular, auto scaling appears very well-suited when an explor-
atory analysis on the chemical manifold should be performed,
whereas range, max, vast scaling (and PARETO) are useful for cap-
turing the principal features of the systems and the behavior of the
main chemical species. This appears very appealing for building
reduced-order models of combustion systems to be used in optimi-
zation studies.
3.3. PC sensitivity to system variability

We now consider the question of how sensitive a PCA is to the
characteristics of a system such as Reynolds number. To investi-
gate this, the four piloted jet flames (Sandia flames C to F) are con-
sidered. These flames have increasing Reynolds numbers that lead
to significant extinction in flames E and F, which is near blow-out.
Given that significantly different regions of state space are realized
in these flames (e.g., extinction), one may not think that the PCA
structure should be consistent across all flames. Figure 13 shows
the weights of the original variables on the first four PCs (columns
of A) for Sandia flames C–F. The PC structure remains very similar
for the first four PCs. The possible exception is weights on interme-
diate species such as CO, H2 and OH, which show some variation in
their contributions to the eigenvectors across the range of Rey-
nolds numbers. This is a consequence of the increasing degree of
extinction which characterizes flames C to F: the OH distribution
shows a larger scatter as the Reynolds number is increased. As a re-
sult, OH contribution to the covariance matrix is decreased (OH is
less correlated with the other state parameters) and the corre-
sponding weights on the PC is reduced.
me dataset, as a function of the number of retained PC, q, and the scaling option used.

VAST Level PARETO

q = 2 q = 3 q = 2 q = 3 q = 2 q = 3

0.992 0.992 0.896 0.943 1.000 1.000
0.975 0.978 0.942 0.961 0.990 0.991
1.000 1.000 0.965 0.970 0.989 0.994
0.945 0.947 0.991 0.991 0.965 0.967
0.940 0.978 0.870 0.884 0.917 0.968
0.979 0.980 0.987 0.987 0.999 0.999
0.981 0.985 0.908 0.959 0.967 0.993
0.660 0.687 0.870 0.993 0.554 0.567
0.744 0.970 0.701 0.926 0.759 0.813
0.992 0.996 0.949 0.973 0.999 0.999

(2012), http://dx.doi.org/10.1016/j.combustflame.2012.09.016
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Fig. 13. Structure of the first four PC for PCA applied to flames C–F in the TNF series [16]. Scaling criterion adopted: auto scaling.
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Although Fig. 13 indicates that the PCA structure is largely un-
changed, the question remains of how sensitive the PCA recon-
struction of state variables is to slight variation in the PCA
structure. In other words, can the low-dimensional representation
obtained via PCA for one of the four systems can be exploited for
the others, without performing a new decomposition? This ques-
tion is crucial to assess the universality of the PCA approach for
identifying manifolds in reacting systems. To answer this question,
a PCA was performed for flames C and F and employed to recon-
struct the other datasets. This implies projecting the scores of each
system onto a single PC basis (C or F):

Xq;i ¼ Zq;iA
T
q;k k ¼ C; F: ð13Þ

Table 2 lists tq,i (the R2 values for a linear reconstruction) for

1. flames C–F using PCA on each dataset (labeled as tq,i)
Table 2
Individual variance, tq,j, accounted for the Sandia flame C–F datasets by the PCA reduction, a
by which variables are reconstructed using the PCA obtained for flame F and flame C, resp

tq,i (%) tF
q;i ð%

C D E F C

T 0.985 0.985 0.976 0.971 0.982
YO2 0.987 0.986 0.980 0.979 0.983
YN2 0.982 0.982 0.980 0.980 0.983
YH2 0.975 0.969 0.964 0.970 0.973
YH2 O 0.989 0.989 0.986 0.984 0.987
YCH4 0.987 0.987 0.984 0.984 0.986
YCO 0.972 0.968 0.962 0.969 0.970
YCO2 0.987 0.986 0.976 0.974 0.983
YOH 0.999 0.999 0.995 0.978 0.990
YNO 0.945 0.932 0.887 0.892 0.942
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2. flames C–E using the PCA obtained from flame F (labeled as tF
q;i).

3. flames D–F using the PCA obtained from flame C (labeled as tC
q;i)

Results indicate that the low-dimensional representation found
for flame F provides a very satisfactory representation of the other
systems. In all cases, the relative error with respect to an optimal
reconstruction (tq,i versus tF

q;i) is less than 1%. When the basis found
for flame C is employed, a very interesting result is observed: the
reconstruction of most state variables slightly improves and the
accuracy in NO reconstruction decreases. This is probably due to
the increasing degree of extinction determined by the increase of
Re, which leads to a large variability of NO species, as shown in
Fig. 14. As a consequence, the basis identified directly from the
flames reflect the major variability of NO, leading to larger weights
on the first components. This is not the case when the basis is
extracted from flame C, leading to less accurate NO predictions.
s a function of the number of retained PCs, q. Note that tF
c;i and tC

q;i refer to the accuracy
ectively.

Þ tC
q;i ð%Þ

D E D E F

0.981 0.974 0.984 0.977 0.974
0.983 0.979 0.986 0.980 0.977
0.981 0.980 0.981 0.979 0.979
0.966 0.966 0.966 0.964 0.965
0.986 0.984 0.988 0.985 0.984
0.985 0.984 0.986 0.985 0.985
0.963 0.962 0.964 0.962 0.970
0.980 0.975 0.985 0.977 0.975
0.990 0.984 0.999 0.999 0.998
0.931 0.895 0.933 0.877 0.850

(2012), http://dx.doi.org/10.1016/j.combustflame.2012.09.016
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Fig. 14. NO distribution with increasing Reynolds number (from left to right) for flames C–F.
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3.3.1. Effect of scaling on manifold invariance
For completeness, we also consider the effect of scaling on the

manifold invariance. Figure 15 shows the standard deviation of
the first PC weights on each original variable considering PCA per-
formed on flames C–F independently with different scaling meth-
ods. Large standard deviations indicate an alteration in the PCA
structure across flames C–E when using the given scaling method.
In all cases, there is not a significant variation in the PC structure
(with the standard deviation remaining below 0.04 in all cases),
but they appear extremely stable for VAST and PARETO scaling
methods, which emphasize major and stable variables of the
state-space.

The results shown in this section indicate the potential of
exploiting a PCA-reduced representation even when the system
characteristics are modified. In particular, the relative indepen-
dence of the basis on the Reynolds number indicate the invariabil-
ity of the manifold in a range of operating conditions. Nevertheless,
further study considering more systems over wider ranges of Re is
warranted before concluding that PCA is entirely independent of
Re.
4. Conclusions

PCA has recently been proposed as a technique to identify cor-
relations among the multivariate datasets ubiquitous to turbulent
combustion. These correlations imply the existence of manifolds in
the chemically reactive systems, and PCA has shown promise in
identifying these manifolds [1,5–7]. This paper has explored the
details of data pre-processing for use in PCA. Specifically, scaling
and centering the data as well as outlier removal have been
discussed.

The existence of outliers in the dataset can significantly alter
the determination of the PC structure and this can lead to the
Please cite this article in press as: A. Parente, J.C. Sutherland, Combust. Flame
overestimation of the role of specific variables, or sets of variables,
for which outlier observations exist. A method based on PCA has
proved very satisfactory for the elimination of the observations
which differ from the main multi-variate structure, based on PC
classifier built from the first and last few PC, respectively. The
effectiveness of the approach was proven for different systems,
including a jet in hot co-flow, a set of piloted flames and a bluff-
body stabilized burner.

The choice of scaling in particular has a significant impact on
the resulting PCA structure by altering the relative importance of
various species and temperature. Indeed, different scaling choices
may be made depending on the goal of the resulting PCA to opti-
mize the reconstruction of specific classes of state variables. In par-
ticular, auto-scaling appears the best option where a balanced
reconstruction of the state-space is required for exploratory analy-
sis, whereas level scaling enhances the role of minor species. All
the other tested scalings (range, max, VAST) appear ideal for the
optimization of stable and major species.

Finally, for the TNF flame datasets, we have demonstrated that
the PCA structure remains nearly invariant with Reynolds number
across the range from flame C to flame F. This observation is further
substantiated by the fact that reconstructing flame C data from a
PCA obtained on flame F (or vice versa) is nearly as accurate as
reconstructing data from a PCA obtained directly on that dataset.

Acknowledgments

The research was sponsored by the National Nuclear Security
Administration under the Accelerating Development of Retrofit-
table CO2 Capture Technologies through Predictivity Program
through DOE Cooperative Agreement DE-NA0000740 and by Na-
tional Science Foundation PetaApps award 0904631.

References

[1] A. Parente, J.C. Sutherland, L. Tognotti, P. Smith, Proc. Combust. Inst. 32 (2009)
579–1586.

[2] U. Maas, D. Thévenin, Proc. Combust. Inst. 27 (1998) 1183–1189.
[3] C.E. Frouzakis, Y.G. Kevrekidis, J. Lee, K. Boulouchos, A.A. Alonso, Proc.

Combust. Inst. 28 (2000) 75–81.
[4] S.J. Danby, T. Echekki, Combust. Flame 144 (2006) 126–138.
[5] A. Parente, J.C. Sutherland, B.B. Dally, L. Tognotti, P.J. Smith, Proc. Combust.

Inst. 33 (2) (2011) 3333–3341.
[6] J.C. Sutherland, A. Parente, Proc. Combust. Inst. 32 (2009) 1563–1570.
[7] A. Biglari, J.C. Sutherland, Combust. Flame.
[8] I.T. Jolliffe, Principal Component Analysis, Springer, New York, NY, 1986.
[9] E.J. Jackson, A User’s Guide to Principal Components, Wiley, New York, NY,

1991.
[10] Axel Coussement, Olivier Gicquel, Alessandro Parente, MG-local-PCA method

for reduced order combustion modeling, Proceedings of the Combustion
Institute, Available online 30 June 2012, ISSN 1540-7489, http://dx.doi.org/
10.1016/j.proci.2012.05.073.

[11] M. Shyu, S. Chen, K. Sarinnapakorn, L. Chang, A novel anomaly detection
scheme based on principal component classifier, in: Proceedings of the IEEE
(2012), http://dx.doi.org/10.1016/j.combustflame.2012.09.016

http://dx.doi.org/10.1016/j.proci.2012.05.073
http://dx.doi.org/10.1016/j.proci.2012.05.073
http://dx.doi.org/10.1016/j.combustflame.2012.09.016


A. Parente, J.C. Sutherland / Combustion and Flame xxx (2012) xxx–xxx 11
Foundations and New Directions of Data Mining Workshop, in conjunction
with the Third IEEE International Conference on Data Mining, 2003, pp. 172–
179.

[12] R.S. Barlow, J.H. Frank, Proc. Combust. Inst. 27 (1998) 1087–1095.
[13] H.C. Keun, T.M.D. Ebbels, H. Antti, M.B. Bollard, O. Beckonert, B. Holmes, J.C.

Lindon, J.K. Nicholson, Anal. Chim. Acta 490 (2003) 265–276.
[14] I. Noda, J. Mol. Struct. 883–884 (2008) 216–227, http://dx.doi.org/10.1016/

j.molstruc.2007.12.026. <http://www.dx.doi.org/10.1016/j.molstruc.2007.12.026>.
[15] A. Parente, Experimental and Numerical Investigation of Advanced Systems for

Hydrogen-Based Fuel Combustion, Ph.D. Thesis, Università di Pisa, 2008.
Please cite this article in press as: A. Parente, J.C. Sutherland, Combust. Flame
[16] Turbulent Nonpremixed Flames Workshop <http://www.ca.sandia.gov/TNF/
abstract.html>.

[17] R.S. Barlow, G.J. Fiechtner, C.D. Carter, J.-Y. Chen, Combust. Flame 120 (2000)
549–569.

[18] B.B. Dally, A.N. Karpetis, R.S. Barlow, Proc. Combust. Inst. 29 (2002) 1147–
1154.

[19] B.B. Dally, F.D. F, A.R. Masri, Combust. Theory Modell. 2 (1998) 193–219.
[20] B.B. Dally, A.R. Masri, R.S. Barlow, G.J. Fiechtner, Combust. Flame 114 (1–2)

(1998) 119–148.
[21] B.B. Dally, E. Riesmeier, N. Peters, Combust. Flame 137 (2004) 418–431.
(2012), http://dx.doi.org/10.1016/j.combustflame.2012.09.016

http://dx.doi.org/10.1016/j.molstruc.2007.12.026
http://www.dx.doi.org/10.1016/j.molstruc.2007.12.026
http://www.ca.sandia.gov/TNF/abstract.html
http://www.ca.sandia.gov/TNF/abstract.html
http://dx.doi.org/10.1016/j.combustflame.2012.09.016

	Principal component analysis of turbulent combustion data: Data pre-processing and manifold sensitivity
	1 Introduction
	2 Principal component analysis
	2.1 Outlier detection and removal with PCA
	2.2 Centering and scaling
	2.3 Choosing a subset of principal components

	3 Results
	3.1 Effect of outliers on the PCA structure
	3.1.1 Effect of the threshold parameter, γ

	3.2 Effect of scaling
	3.3 PC sensitivity to system variability
	3.3.1 Effect of scaling on manifold invariance


	4 Conclusions
	Acknowledgments
	References


