Difference between revisions of "Matlab Arrays"

From Sutherland_wiki
Jump to: navigation, search
m (Shortcuts for Special Matrices)
(Accessing Arrays)
Line 142: Line 142:
 
=== Slicing arrays using the ":" operator ===
 
=== Slicing arrays using the ":" operator ===
 
=== Information about Arrays ===
 
=== Information about Arrays ===
* '''size'''
+
* '''size''' - returns the number of rows and columns in an array. Example:
* '''length'''
+
  A = [1 2 3; 4 5 6];
* '''max'''
+
  [nrow,ncol] = size(A);
* '''min'''
+
The result of this is that nrow=2 and ncol=3.
 +
* '''length''' - returns the number of elements in a vector.  Example:
 +
  a = [1 2 3 4 3 2 1];
 +
  na = length(a);
 +
Results in na=7.
 +
* '''max''' For a vector, max('''v''') returns the largest element in '''v'''.  For matrices, max('''V''') returns a row vector whose elements contain the maximum value in each column of '''V'''.
 +
* '''min''' Analogous to '''max'''.
  
 
=== Other Useful Tools ===
 
=== Other Useful Tools ===
* '''sum'''
+
Use MATLAB's help command to learn more about how to use these commands.
* '''sort'''
+
 
* '''any'''
+
{| border="1" cellpadding="5" cellspacing="0" align="center" style="text-align:left"
* '''all'''
+
|-
* '''find'''
+
! Matlab command
* '''isequal'''
+
! Summary
 +
! Example(s)
 +
|-
 +
| '''sum'''
 +
|
 +
* For a vector, sum('''v''') returns the sum of the elements of '''v'''.
 +
* For matrices, sum('''V''') returns a row vector whose elements contain the sum of the columns of '''V'''.
 +
|
 +
  a=sum([1 2 3]);    % a=6
 +
  b=sum([1 2; 3 4]); % b = [4 6]
 +
|-
 +
| '''sort'''
 +
| Sort an array in ascending or descending order.
 +
| '''sort([2 5 1])''' gives '''1 2 5'''
 +
|-
 +
| '''any'''
 +
| any(A)  Evaluates to "true" if any of the elements in the array are true (nonzero).
 +
|
 +
  a=[1 2 3]; b=[1 3 4];
 +
  r1 = any(a>b);    % r1 is FALSE (equal to 0)
 +
  r2 = any(a==b);  % r2 is TRUE (equal to 1) since a(1) is equal to b(1).
 +
|-
 +
| '''all'''
 +
| Evaluates to "true" if all of the elements in the array are true (nonzero).
 +
|
 +
  A = [1 2; 3 4];
 +
  B = [-1 1; 2 3];
 +
  r1 = all(A>B);  % r1 is TRUE (equal to 1) since the elements in A are
 +
                  % all greater than their corresponding elements in B.
 +
  r2 = all(2*B>A); % r2 is FALSE
 +
|-
 +
| '''find'''
 +
| find(A) returns the indices where A is nonzero.
 +
|
 +
  A = [1 5 0; 0 2 0];
 +
  i = find(A(:,1));  % i=1
 +
  i = find(A(:,2));  % i=[1 2]'
 +
  i = find(A);      % i=[1 3 4]'
 +
  [i,j] = find(A);  % i=[ 1 1 2 ]' j=[ 1 2 2 ]'
 +
  i = find(A>4);    % i=3
 +
  [i,j] = find(A<2); % i=[1 2 1 2]'  j=[1 1 3 3]'
 +
|-
 +
| '''isequal'''
 +
| isequal(A,B) returns true if all elements of A and B are equal, false otherwise.
 +
|
 +
  A = [1 2; 3 4];
 +
  B = [2 4; 6 8];
 +
  c = isequal(A,B);  % c is FALSE
 +
  d = isequal(2*A,B); % d is TRUE
 +
 +
Here is something a bit more complex, using the fact that <math>\sin^2(\alpha)+\cos^2(\alpha) = 1</math>
 +
  x = rand(5);
 +
  y1 = sin(x).*sin(x);
 +
  z1 = cos(x).*cos(x);
 +
  q = ones(5);
 +
  c = isequal(q,y1+z1);  % c is TRUE
 +
|}
  
 
== Array Arithmetic ==
 
== Array Arithmetic ==

Revision as of 10:53, 11 August 2008


Array Basics

An array is an n-dimensional collection of numbers. Matrices are 2-dimensional arrays, and vectors are 1-dimensional arrays.

Vectors can be either a row or column vector:


  \quad
  a=\left[ \begin{array}{c} a_1 \\ a_2 \\ a_3 \\ \vdots \\ a_n \end{array} \right]
  \quad
  b = \left[ \begin{array}{cccc} b_1  &  b_2  &  \cdots & b_n \end{array} \right]
  \quad
  c = \left[ \begin{array}{c} 1 \\ 4 \\ 3.2 \\ \pi \end{array} \right]

We refer to the elements of an array by their position in the array. For example, the third element in c is 3.2, and the second element in a is a_2.

Matrices are two-dimensional arrays, whose elements are referred to by the row and column that they belong to. For example,


  \quad
  A = \left[ \begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{array}\right]

is a matrix with three rows and two columns. We refer to this as a \scriptstyle 3 \times 2 matrix. The first index is the row and the second index is the column.

Transposing Arrays

Occasionally we want to transpose an array. This is done by exchanging rows and columns. For example,


  A = \left[ \begin{array}{cc} 2 & 4 \\ 6 & 8 \\ 10 & 12 \end{array} \right]
  \quad \Rightarrow \quad
  A^\mathsf{T} = \left[ \begin{array}{ccc} 2 & 6 & 10 \\ 4 & 8 & 12 \end{array} \right]

Here the ^\mathsf{T} superscript indicates transpose. Note that if we transpose an array twice, we recover the original array. In other words, \left(A^\mathsf{T}\right)^\mathsf{T} = A.

Creating Arrays in Matlab

Manual Creation

Often we need to create small arrays with only a few numbers. In this case, it is easiest to create the vector in one Matlab statement. For example, to create the vector 
  a = \left[ \begin{array}{cc} 2 \\ 4 \\ 6 \\ 8 \end{array} \right]
we could use any of the following Matlab commands:

 a = [ 2; 4; 6; 8; ];  % create a column vector
 a = [ 2 4 6 8 ]';     % create a row vector and then
                       % transpose it to produce a column vector.
 a = [ 2
       4
       6
       8 ];  % creates a column vector.

Similarly, a row vector such as b = [1 3 5 7 ] may be created as

 b = [ 1 3 5 7 ];
 b = [ 1, 3, 5, 7 ];
 b = [ 1; 3; 5; 7 ]';  % transpose a column vector.

Note that the semicolon (;) identifies the end of a row in the matrix. Commas may be used to separate columns in the matrix, but they are not necessary.

Matrices may be created directly in much the same way as vectors are. As an example, let's build the matrix A = \left[ \begin{array}{cc} 2 & 4 \\ 6 & 8 \\ 10 & 12 \end{array} \right]. This may be done in several ways.

 A = [ 2 4; 6 8; 10 12 ];
 A = [ 2 4
       6 8
       10 12 ];

Note that a semicolon (;) separates each row of the matrix while spaces separate each column.

We may also create a matrix from vectors. For example, we may construct A from its rows as follows:

 arow1 = [ 2 4 ];
 arow2 = [ 6 8 ];
 arow3 = [ 10 12 ];
 A = [ arow1; arow2; arow3 ];

Similarly, we can build a matrix from its columns:

 acol1 = [2 6 10]';
 acol2 = [4; 8; 12];
 A = [ acol1 acol2 ];


Using the ":" operator to create arrays

Sometimes we have vectors that have specific patterns. For example, a=[1 2 3 4 5]. The : operator can help us create such arrays:

 array = lower : increment : upper;

This creates an array starting at lower and ending at upper with spacing of increment. You may eliminate the increment argument, in which case it defaults to 1.

Examples:

 a = 1:5;        % creates a=[ 1 2 3 4 5 ]
 b = 1:1:5;      % creates b=[ 1 2 3 4 5 ]
 c = 1:2:7;      % creates c=[ 1 3 5 7 ]
 d = 1:2:8;      % creates d=[ 1 3 5 7 ]
 e = 1.1:5       % creates e=[ 1.1 2.3 3.1 4.1 ]
 f = 0.1:0.1:0.5 % creates f=[ 0.1 0.2 0.3 0.4 0.5 ]
 g = 5:-1:1;     % creates g=[ 5 4 3 2 1 ];
 h = (1:3)';     % creates a column vector with elements 1, 2, 3.


Linspace and Logspace

Occasionally we want to create numbers that are equally spaced between two limits. We can use the linspace command to do this.

 linspace( lo, hi, n );
   Creates a row vector with n points equally spaced between lo and hi.

Examples:

 a = linspace(1,5,5);    % creates a=[ 1 2 3 4 5 ]
 b = linspace(1,5,4);    % creates b=[ 1.0 2.333 3.667 5.0 ]
 c = linspace(5,1,5);    % creates c=[ 5 4 3 2 1 ]
 d = linspace(1,5,5)';   % creates a column vector

Sometimes we want points logarithmically spaced. For example, we may want to create a vector a=[ 0.1 1 10 100]. This can be accomplished using the logspace command:

 logspace( lo, hi, n );
   Creates a vector with n points spaced logarithmically between 10^\mathrm{lo} and 10^\mathrm{hi}

Examples:

 a = logspace(-1,3,5);    % creates a=[ 0.1 1 10 100 1000 ]
 b = logspace(3,-1,5);    % creates b=[ 1000 100 10 1 0.1 ]
 c = logspace(-1,3,5)';   % creates a column vector


Shortcuts for Special Matrices

  • ones(nrow,ncol) - creates an array of all ones with nrow rows and ncol columns.
  • zeros(nrow,ncol) - creates an array of all zeros with nrow rows and ncol columns.
  • eye(nrow,ncol) - creates an array with ones on its diagonal and zeros elsewhere. Example: eye(3,2) produces \left[ \begin{array}{cc}
  1 & 0 \\
  0 & 1 \\
  0 & 0
 \end{array} \right] while eye(3,3) gives \left[ \begin{array}{ccc}
  1 & 0 & 0 \\
  0 & 1 & 0\\
  0 & 0 & 1
\end{array} \right]
  • rand(nrow,ncol) - creates an array with nrow rows and ncol columns full of random numbers.

Sparse Matrices

Accessing Arrays

Indexing arrays

Slicing arrays using the ":" operator

Information about Arrays

  • size - returns the number of rows and columns in an array. Example:
 A = [1 2 3; 4 5 6];
 [nrow,ncol] = size(A);
The result of this is that nrow=2 and ncol=3.
  • length - returns the number of elements in a vector. Example:
 a = [1 2 3 4 3 2 1];
 na = length(a);
Results in na=7.
  • max For a vector, max(v) returns the largest element in v. For matrices, max(V) returns a row vector whose elements contain the maximum value in each column of V.
  • min Analogous to max.

Other Useful Tools

Use MATLAB's help command to learn more about how to use these commands.

Matlab command Summary Example(s)
sum
  • For a vector, sum(v) returns the sum of the elements of v.
  • For matrices, sum(V) returns a row vector whose elements contain the sum of the columns of V.
 a=sum([1 2 3]);    % a=6
 b=sum([1 2; 3 4]); % b = [4 6]
sort Sort an array in ascending or descending order. sort([2 5 1]) gives 1 2 5
any any(A) Evaluates to "true" if any of the elements in the array are true (nonzero).
 a=[1 2 3]; b=[1 3 4];
 r1 = any(a>b);    % r1 is FALSE (equal to 0)
 r2 = any(a==b);   % r2 is TRUE (equal to 1) since a(1) is equal to b(1).
all Evaluates to "true" if all of the elements in the array are true (nonzero).
 A = [1 2; 3 4];
 B = [-1 1; 2 3];
 r1 = all(A>B);   % r1 is TRUE (equal to 1) since the elements in A are
                  % all greater than their corresponding elements in B.
 r2 = all(2*B>A); % r2 is FALSE
find find(A) returns the indices where A is nonzero.
 A = [1 5 0; 0 2 0];
 i = find(A(:,1));  % i=1
 i = find(A(:,2));  % i=[1 2]'
 i = find(A);       % i=[1 3 4]'
 [i,j] = find(A);   % i=[ 1 1 2 ]'  j=[ 1 2 2 ]'
 i = find(A>4);     % i=3
 [i,j] = find(A<2); % i=[1 2 1 2]'  j=[1 1 3 3]'
isequal isequal(A,B) returns true if all elements of A and B are equal, false otherwise.
 A = [1 2; 3 4];
 B = [2 4; 6 8];
 c = isequal(A,B);   % c is FALSE
 d = isequal(2*A,B); % d is TRUE

Here is something a bit more complex, using the fact that \sin^2(\alpha)+\cos^2(\alpha) = 1

 x = rand(5);
 y1 = sin(x).*sin(x);
 z1 = cos(x).*cos(x);
 q = ones(5);
 c = isequal(q,y1+z1);  % c is TRUE

Array Arithmetic

Addition and Subtraction

Multiplication

Elemental Operations