Difference between revisions of "Interpolation"

From Sutherland_wiki
Jump to: navigation, search
(New page: == Linear Interpolation == == Polynomial Interpolation == == Cubic Spline Interpolation == == Lagrange Polynomial Interpolation == Given <math>n_p</math> points <math>(x_k,y_k),</ma...)
 
m (Lagrange Polynomial Interpolation)
Line 10: Line 10:
 
== Lagrange Polynomial Interpolation ==
 
== Lagrange Polynomial Interpolation ==
  
Given <math>n_p</math> points <math>(x_k,y_k),</math> the interpolated function values, <math>f(x)</math> are expressed as  
+
Given <math>n_p</math> points <math>(x_k,y_k),</math> the <math>n^\mathrm{th}</math> order Lagrange polynomial that interpolates these function values, <math>f(x)</math> are expressed as  
 
<center> <math> f(x)=\sum_{k=0}^{n} y_{k} L_{k}(x), </math> </center>
 
<center> <math> f(x)=\sum_{k=0}^{n} y_{k} L_{k}(x), </math> </center>
 
where <math>L_{k}(x)</math> is the Lagrange polynomial given by
 
where <math>L_{k}(x)</math> is the Lagrange polynomial given by
<center> <math> L_{k}(x)=\prod_{\stackrel{i=0}{i\ne k}}^{n}\frac{x-x_{i}}{x_{k}-x_{i}}. </math> </center>
+
<center> <math> L_{k}(x)=\prod_{\stackrel{i=0}{i\ne k}}^{n}\frac{x-x_{i}}{x_{k}-x_{i}}, </math> </center>
 +
and <math>n_p = n+1</math>. In other words, for an <math>n^\mathrm{th}</math> order interpolation, we require <math>n_p=n+1</math> points.
 +
 
 +
The <math>\prod</math> operator represents the continued product, and is analogous to the <math>\sum</math> operator for summations.  For example, <math>\prod_{i=1}^{3} (x+i) = (x+1)(x+2)(x+3)</math>.
  
 
=== Example ===
 
=== Example ===

Revision as of 08:42, 15 July 2008

Linear Interpolation

Polynomial Interpolation

Cubic Spline Interpolation

Lagrange Polynomial Interpolation

Given n_p points (x_k,y_k), the n^\mathrm{th} order Lagrange polynomial that interpolates these function values, f(x) are expressed as

 f(x)=\sum_{k=0}^{n} y_{k} L_{k}(x),

where L_{k}(x) is the Lagrange polynomial given by

 L_{k}(x)=\prod_{\stackrel{i=0}{i\ne k}}^{n}\frac{x-x_{i}}{x_{k}-x_{i}},

and n_p = n+1. In other words, for an n^\mathrm{th} order interpolation, we require n_p=n+1 points.

The \prod operator represents the continued product, and is analogous to the \sum operator for summations. For example, \prod_{i=1}^{3} (x+i) = (x+1)(x+2)(x+3).

Example