View a current copy of my Curriculum Vitae.
Research Interests
- Combustion
- Computational Fluid Dynamics
- Algorithm & software design
- Graph theory applied to solution of large systems of PDEs.
- Domain specific languages for solution of PDEs.
- Smart algorithms & dynamic algorithm switching (including modification of constitutive models, addition/removal of governing equations, etc.)
- Fire simulation
- Multi-physics simulation
- Manifold methods for chemical kinetic reduction
- Multiscale turbulence-chemistry interactions & subgrid mixing.
Software
Prof. Sutherland is actively involved in developing several software projects. For more information, please follow this link.
Peer-Reviewed Journal Publications
2024
(2024) Reduced-order modeling with reconstruction-informed projections, Combustion and Flame 259, p. 113119, url, doi:10.1016/j.combustflame.2023.113119
2023
(2023) Improving reduced-order models through nonlinear decoding of projection-dependent outputs, Patterns 4, p. 100859, url, doi:10.1016/j.patter.2023.100859
(2023) PCAfold 2.0—Novel tools and algorithms for low-dimensional manifold assessment and optimization, SoftwareX 23, p. 101447, url, doi:10.1016/j.softx.2023.101447
(2023) Local manifold learning and its link to domain-based physics knowledge, Applications in Energy and Combustion Science 14, p. 100131, url, doi:10.1016/j.jaecs.2023.100131
2022
(2022) Cost function for low-dimensional manifold topology assessment, Scientific Reports 12(1), p. 14496, url, doi:10.1038/s41598-022-18655-1
(2022) Accurate Compression of Tabulated Chemistry Models with Partition of Unity Networks, Combustion Science and Technology, p. 1-18, url, doi:10.1080/00102202.2022.2102908
(2022) Computational modeling and experiments of an elastoviscoplastic fluid in a thin mold-filling geometry, Journal of Non-Newtonian Fluid Mechanics 307, Elsevier, url, doi:10.1016/j.jnnfm.2022.104851
(2022) Manifold-informed state vector subset for reduced-order modeling, Proceedings of the Combustion Institute, url, doi:10.1016/j.proci.2022.06.019
(2022) Characterizing Tradeoffs in Memory, Accuracy, and Speed for Chemistry Tabulation Techniques, Combustion Science and Technology 195(11), p. 2614-2633, url, doi:10.1080/00102202.2022.2028780
2021
(2021) Low-cost Runge-Kutta integrators for incompressible flow simulations, Journal of Computational Physics, url, doi:10.1016/j.jcp.2021.110518
(2021) A modified many-body dissipative particle dynamics model for mesoscopic fluid simulation: methodology, calibration, and application for hydrocarbon and water, Molecular Simulation 47(4), p. 1-13, url, doi:10.1080/08927022.2021.1876233
(2021) A technique for characterising feature size and quality of manifolds, Combustion Theory and Modelling 25(4), p. 646-668, Taylor & Francis, url, doi:10.1080/13647830.2021.1931715
(2021) Mitigation strategies for airborne disease transmission in orchestras using computational fluid dynamics, Science Advances 7(26), p. eabg4511, url, doi:10.1126/sciadv.abg4511
(2021) Characterization of temperature criteria using gas-phase fuel streams for MILD coal combustion, Fuel 296, url, doi:10.1016/j.fuel.2021.120445
(2021) Additional criteria for MILD coal combustion, Proceedings of the Combustion Institute 38(3), p. 4233-4240, url, doi:10.1016/j.proci.2020.06.175
2020
(2020) PCAfold: Python software to generate, analyze and improve PCA-derived low-dimensional manifolds, SoftwareX 12, p. 100630, url, doi:10.1016/j.softx.2020.100630
(2020) PyModPDE : A Python Software for Modified Equation Analysis, SoftwareX 12, url, doi:https://doi.org/10.1016/j.softx.2020.100541
(2020) Assessment of various tar and soot treatment methods and a priori analysis of the steady laminar flamelet model for use in coal combustion simulation, Fuel 265(1), p. 116775, url, doi:10.1016/j.fuel.2019.116775
2019
(2019) Automatic Halo Management for the Uintah GPU-Heterogeneous Asynchronous Many-Task Runtime, International Journal of Parallel Programming 47(5-6), p. 1086-1116, url, doi:10.1007/s10766-018-0619-1
2018
(2018) State space parameterization of explosive eigenvalues during autoignition, Combustion and Flame 196, p. 182-196, doi:10.1016/j.combustflame.2018.06.012
(2018) On the consistency of state vectors and Jacobian matrices, Combustion and Flame 193, p. 257-271, doi:10.1016/j.combustflame.2018.03.017
2017
(2017) The effect of model fidelity on prediction of char burnout for single-particle coal combustion, Proceedings of the Combustion Institute 36(2), p. 2165-2172, Elsevier Inc., url, doi:10.1016/j.proci.2016.06.136
(2017) Scalable Tools for Generating Synthetic Isotropic Turbulence with Arbitrary Spectra, AIAA journal 55(1), p. 327-331, url, doi:10.1002/elan.
(2017) An Evaluation of the Efficacy of Various Coal Combustion Models for Predicting Char Burnout, Fuel 201, p. 53-64, url, doi:10.1016/j.fuel.2016.11.052
(2017) Dual timestepping methods for detailed combustion chemistry, Combustion Theory and Modelling 21(2), p. 329-345, url, doi:10.1080/13647830.2016.1235728
2016
(2016) PoKiTT: Exposing Task and Data Parallelism on Heterogeneous Architectures for Detailed Chemical Kinetics, Transport, and Thermodynamics Calculations, SIAM Journal on Scientific Computing 38(5), p. S264-S281, url, doi:10.1137/15M1026237
(2016) Nebo: An efficient, parallel, and portable domain-specific language for numerically solving partial differential equations, Journal of Systems and Software 125, p. 389-400, url, doi:10.1016/j.jss.2016.01.023
(2016) Wasatch: an Architecture-Proof Multiphysics Development Environment using a Domain Specific Language and Graph Theory, Journal of Computational Science 17(3), p. 639–646, url, doi:10.1016/j.jocs.2016.04.010
(2016) One-Dimensional Modeling of Turbulent Premixed Jet Flames - Comparison to DNS, Flow, Turbulence and Combustion 97(3), p. 913–930, url, doi:10.1007/s10494-016-9721-x
(2016) Comment on ``Diffusion by a Random Velocity Field'' [Phys. Fluids 13 , 22 (1970)], Phys. Fluids 28(11), url, doi:10.1063/1.4968528
(2016) Comment on "Diffusion by a random velocity field" [Phys. Fluids 13, 22 (1970)], Physics of Fluids 28(11), doi:10.1063/1.4968528
(2016) Pseudotransient Continuation for Combustion Simulation with Detailed Reaction Mechanisms, SIAM Journal on Scientific Computing 38(2), p. B272-B296, url, doi:10.1137/15M1023166
2015
(2015) Advanced regression methods for combustion modelling using principal components, Combustion and Flame 162(6), p. 2592-2601, url, doi:10.1016/j.combustflame.2015.03.008
(2015) Prediction of oxy-coal flame stand-off using high-fidelity thermochemical models and the one-dimensional turbulence model, Proceedings of the Combustion Institute 35(3), p. 2829-2837, url, doi:10.1016/j.proci.2014.07.003
(2015) An a-posteriori evaluation of principal component analysis-based models for turbulent combustion simulations, Combustion and Flame 162(10), p. 4025-4035, url, doi:10.1016/j.combustflame.2015.07.042
(2015) A comparative study of thermochemistry models for oxy-coal combustion simulation, Combustion and Flame 162(10), p. 4016-4024, url, doi:10.1016/j.combustflame.2015.07.041
2014
(2014) A comparison of various models in predicting ignition delay in single-particle coal combustion, Combustion and Flame 161, p. 1-17, url, doi:10.1016/j.combustflame.2014.01.010
2013
(2013) Principal component analysis of turbulent combustion data: Data pre-processing and manifold sensitivity, Combustion and Flame 160(2), p. 340-350, The Combustion Institute., url, doi:10.1016/j.combustflame.2012.09.016
2012
(2012) Graph-Based Software Design for Managing Complexity and Enabling Concurrency in Multiphysics PDE Software, ACM Transactions on Mathematical Software 39(1), p. 1-21, url, doi:10.1145/2382585.2382586
(2012) A filter-independent model identification technique for turbulent combustion modeling, Combustion and Flame 159(5), p. 1960-1970, The Combustion Institute., url, doi:10.1016/j.combustflame.2011.12.024
2011
(2011) An Evaluation of the One-Dimensional Turbulence Model: Comparison with Direct Numerical Simulations of CO/H2 Jets with Extinction and Reignition, Proc. Combust. Inst. 33(1), p. 1515-1522, url, doi:10.1016/j.proci.2010.06.127
(2011) Investigation of the MILD combustion regime via Principal Component Analysis, Proc. Combust. Inst. 33(2), p. 3333-3341, url, doi:10.1016/j.proci.2010.05.108
(2011) Investigation of the MILD combustion regime via Principal Component Analysis, Proc. Combust. Inst. 33(2), p. 3333-3341, url, doi:10.1016/j.proci.2010.05.108
2010
(2010) A Unified Approach to the Various Formulations of the One-Dimensional Turbulence Model(ICSE091201), Salt Lake City, UT: The Institute for Clean and Secure Energy, url
2009
(2009) Identification of low-dimensional manifolds in turbulent flames, Proceedings of the Combustion Institute 32 I(1), p. 1579-1586, The Combustion Institute, url, doi:10.1016/j.proci.2008.06.177
(2009) Combustion Modeling using Principal Component Analysis, Proc. Combust. Inst. 32(1), p. 1563-1570, url, doi:10.1016/j.proci.2008.06.147
2007
(2007) Scalar Mixing in Direct Numerical Simulations of Temporally-Evolving Plane Jet Flames with Detailed CO/H2 Kinetics, Proc. Combust. Inst. 31, p. 1633-1640
(2007) A Quantitative Method for A Priori Evaluation of Combustion Reaction Models, Combust. Theory Modelling 11(2), p. 287-303, url, doi:10.1080/13647830600936969
2005
(2005) Direct Numerical Simulation of Turbulent Combustion - Fundamental Insights Towards Predictive Models, Journal of Physics: Conference Series 16, p. 65-79, url, doi:10.1088/1742-6596/16/1/009
(2005) Quantification of Differential Diffusion in Nonpremixed Systems, Combust. Theory Modelling 9(2), p. 365-383
2003
(2003) Improved Boundary Conditions for Viscous, Reacting, Compressible Flows, J. Comp. Phys. 191(2), p. 502-524, url, doi:10.1016/S0021-9991(03)00328-0